In: Statistics and Probability
Instructions:
A therapist was interested in determining whether patients experiences reduced anxiety following diaphragmatic breathing exercises. She includes 9 participants in her brief study. Each patient provides a rating for current anxiety, on a scale of 1 (least anxiety) to 10 (extreme anxiety). She then instructs them on a 45-minute diaphragmatic breathing exercise. Following the exercise, each patient again rates his/her anxiety on the same 1-10 scale. (Note that this is a repeated measures study because each patient/participant is measured twice, once before the treatment and once after the treatment.)
Patient |
Before treatment |
After treatment |
A |
8 |
7 |
B |
7 |
5 |
C |
6 |
6 |
D |
7 |
6 |
E |
9 |
7 |
F |
8 |
5 |
G |
5 |
4 |
H |
9 |
4 |
I |
7 |
4 |
The null hypothesis would be as followed
Ho:D = 0
H1:D ≠ 0
The test-statistic would be as followed
Treatment 1 | Treatment 2 | Diff (T2 - T1) | Dev (Diff - M) | Sq . Dev |
8 | 7 | -1 | 1 | 1 |
7 | 5 | -2 | 0 | 0 |
6 |
6 | 0 | 2 | 4 |
7 | 6 | -1 | 1 | 1 |
9 | 7 | -2 | 0 | 0 |
8 | 5 | -3 | -1 | 1 |
5 | 4 | -1 | 1 | 1 |
9 | 4 | -5 | -3 | 9 |
7 | 4 | -3 | -1 | 1 |
M : -2 | S : 18 |
Note:
Treatment1 - Before Treatment
Treatment2 - After Treatment
M - Sample mean
S - Standard deviation
Difference scores calculations:
Mean: -2
= 0
= = = 2.25
= = = 0.25
= = = 0.5
T-value Calcultion:
t = = =-4
T-value = -4
So, by using t-table p-value would be as follows
p-value = 0.00395
According to the decision theory, p-value < alpha-value (0.05)
So, we will reject the null hyporhesis as the results are significant.
(Coefficient of determination) = 0.095238
Which shows that 9.524% of variability is explained in the data.