Question

In: Physics

a 2.34-kg cart on a long, level, low friction track is heading for a small electric...

a 2.34-kg cart on a long, level, low friction track is heading for a small electric fan at 0.21 m/s. The fan which was initially off, is turned on. As the fan speeds up, the magnitude of the force it exerts on the cart is given by at^2, where a=0.0200 N/s^2

A. What is the speed of the cart 3.5 s after the fan is turned on? (first i got 0.4958 m/s but was wrong)

B. After how many seconds is the cart's velocity zero

Solutions

Expert Solution

(A) The speed of the cart after the fan is turned on which is given as :

The rate of change of velocity (momentum) of an object is proportional to the force :

m v = F t

m (dv / dt) = F

where, F = magnitude of force = a t2

then   m (dv / dt) = a t2

integrating an above eq.

v = a t3 / 3 m                                                                    { eq.1 }

where, a = acceleration = 0.02 N/s2

t = time taken = 3.5 sec

m = mass of cart = 2.34 kg

inserting these values in eq.1,

v = (0.02 N/s2) (3.5 s)3 / 3 (2.34 kg)

v = (0.8575 N.s) / (7.02 kg)

v = 0.122 m/s


Related Solutions

A 1.0-kg standard cart collides on a low-friction track with cart A. The standard cart has...
A 1.0-kg standard cart collides on a low-friction track with cart A. The standard cart has an initial xcomponent of velocity of +0.40 m/s, and cart A is initially at rest. After the collision the x component of velocity of the standard cart is +0.20 m/s and the x component of velocity of cart A is +0.70 m/s . After the collision, cart A continues to the end of the track and rebounds with its speed unchanged. Before the carts...
Two low-friction physics demo carts collide on a horizontal track. The first cart, with a mass...
Two low-friction physics demo carts collide on a horizontal track. The first cart, with a mass of 0.154 kg , is moving to the right with a speed of 0.810 m/s . The second cart, with a mass of 0.299 kg , is moving to the left with a speed of 2.21 m/s . The carts collide in an elastic collision, such that the total kinetic energy after the collsion is equal to the total kinetic energy before the collision....
4) Two carts collide on a level track. Cart A has mass of 3 kg and...
4) Two carts collide on a level track. Cart A has mass of 3 kg and cart B has mass of 5 kg. Before the collision cart A moves towards stationary cart B with the speed of 5 m/s. a) What is the momentum of the system of two carts before the collision? b) What is the kinetic energy of the system of two carts before the collision? c) What is the momentum of the system of two carts after...
A 95.7 kg cart initially sits at rest on a flat track. This cart of charge...
A 95.7 kg cart initially sits at rest on a flat track. This cart of charge 0.006 C is placed in an initial potential of 276,228 V, which launches it toward a spring with a spring constant of 416.2 N/m. After being launched, the cart crashes into the spring that brings it to a stop. How far is the spring compressed in order to stop the cart?
A student runs an experiment with two carts on a low-friction track. As measured in the...
A student runs an experiment with two carts on a low-friction track. As measured in the Earth reference frame, cart 1 (m = 0.48 kg ) moves from left to right at 1.0 m/s as the student walks along next to it at the same velocity. Let the +x direction be to the right. a) What velocity v⃗ E2,i in the Earth reference frame must cart 2 (m = 0.16 kg ) have before the collision if, in the student's...
Cart 1, with m1= 5.6 kg, is moving on a frictionless linear air track at an...
Cart 1, with m1= 5.6 kg, is moving on a frictionless linear air track at an initial speed of 1.7 m/s. It undergoes an elastic collision with an initially stationary cart 2, with m2, an unknown mass. After the collision, cart 1 continues in its original direction at 0.6 m/s a) what is the magnitude of the momentum of cart 2 before the collision? b) what is the magnitude of the momentum of cart 1 after the collision? c) what...
-A roller coaster cart of mass (m1=127 kg) initially sits at rest on a track. Once...
-A roller coaster cart of mass (m1=127 kg) initially sits at rest on a track. Once the motor is activated, the cart is accelerated forward (across level ground) until it reaches the bottom of a giant circular loop with a radius of (r1=17.5 m). At this point, the motor is turned off and the cart must "coast" for the remainder of the ride. Assume the track is frictionless and ignore air resistance. At the top of the loop, what is...
Part 1: A cart with mass 0.30 kg and velocity 0.10 m/s collides on an air-track...
Part 1: A cart with mass 0.30 kg and velocity 0.10 m/s collides on an air-track with a cart with mass 0.40 kg and velocity -0.20 m/s. What is the final velocity in m/s of the two carts if they stick together? vf= Part 2: What is the maximum height y that the pendulum can reach in this experiment? a) L b) y0-L c)0.3m d) y0+L e) y0f)0.2m Part 3: A pendulum has a length of L = 1.0 m...
A 4.0- kg wooden block rests on a level table. The coefficient of friction between the...
A 4.0- kg wooden block rests on a level table. The coefficient of friction between the block and the table is 0.22. A 5.0- kg mass is attached to the block by a horizontal string passed over a frictionless pulley of negligible mass. Now, the 5.0- kg mass is released and the whole system accelerates. What is the acceleration of the wooden block? What is the tension in the string during the acceleration? Determine the acceleration for the above situation...
A 4.0- kg wooden block rests on a level table. The coefficient of friction between the block and the table is 0.23. A 5.0- kg mass is attached to the block
A 4.0- kg wooden block rests on a level table. The coefficient of friction between the block and the table is 0.23. A 5.0- kg mass is attached to the block by a horizontal string passed over a frictionless pulley of negligible mass. Now, the 5.0- kg mass is released and the whole system accelerates. What is the acceleration of the wooden block? What is the tension in the string during the acceleration? Determine the acceleration for the above situation when the coefficient...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT