Question

In: Physics

A 1.0-kg standard cart collides on a low-friction track with cart A. The standard cart has...

A 1.0-kg standard cart collides on a low-friction track with cart A. The standard cart has an initial xcomponent of velocity of +0.40 m/s, and cart A is initially at rest. After the collision the x component of velocity of the standard cart is +0.20 m/s and the x component of velocity of cart A is +0.70 m/s . After the collision, cart A continues to the end of the track and rebounds with its speed unchanged. Before the carts collide again, you drop a lump of putty onto cart A, where it sticks. After the second collision, the x component of velocity of the standard cart is -0.20 m/s and the x component of velocity of cart A is +0.50 m/s .

What is the inertia of the putty?

Solutions

Expert Solution


Related Solutions

a 2.34-kg cart on a long, level, low friction track is heading for a small electric...
a 2.34-kg cart on a long, level, low friction track is heading for a small electric fan at 0.21 m/s. The fan which was initially off, is turned on. As the fan speeds up, the magnitude of the force it exerts on the cart is given by at^2, where a=0.0200 N/s^2 A. What is the speed of the cart 3.5 s after the fan is turned on? (first i got 0.4958 m/s but was wrong) B. After how many seconds...
Two low-friction physics demo carts collide on a horizontal track. The first cart, with a mass...
Two low-friction physics demo carts collide on a horizontal track. The first cart, with a mass of 0.154 kg , is moving to the right with a speed of 0.810 m/s . The second cart, with a mass of 0.299 kg , is moving to the left with a speed of 2.21 m/s . The carts collide in an elastic collision, such that the total kinetic energy after the collsion is equal to the total kinetic energy before the collision....
Part 1: A cart with mass 0.30 kg and velocity 0.10 m/s collides on an air-track...
Part 1: A cart with mass 0.30 kg and velocity 0.10 m/s collides on an air-track with a cart with mass 0.40 kg and velocity -0.20 m/s. What is the final velocity in m/s of the two carts if they stick together? vf= Part 2: What is the maximum height y that the pendulum can reach in this experiment? a) L b) y0-L c)0.3m d) y0+L e) y0f)0.2m Part 3: A pendulum has a length of L = 1.0 m...
A 95.7 kg cart initially sits at rest on a flat track. This cart of charge...
A 95.7 kg cart initially sits at rest on a flat track. This cart of charge 0.006 C is placed in an initial potential of 276,228 V, which launches it toward a spring with a spring constant of 416.2 N/m. After being launched, the cart crashes into the spring that brings it to a stop. How far is the spring compressed in order to stop the cart?
A 3.0 kg cart moving to the right with a speed of 1.0 m/s has a...
A 3.0 kg cart moving to the right with a speed of 1.0 m/s has a head-on collision with a 5.0 kg cart that is initially moving to the left with a speed of 2.0 m/s. After the collision, the 3.0 kg cart is moving to the left with a speed of 1.0 m/s. a. What is the final velocity of the 5 kg cart? b. Determine the speed of the center of mass of the two carts before and...
4) Two carts collide on a level track. Cart A has mass of 3 kg and...
4) Two carts collide on a level track. Cart A has mass of 3 kg and cart B has mass of 5 kg. Before the collision cart A moves towards stationary cart B with the speed of 5 m/s. a) What is the momentum of the system of two carts before the collision? b) What is the kinetic energy of the system of two carts before the collision? c) What is the momentum of the system of two carts after...
A student runs an experiment with two carts on a low-friction track. As measured in the...
A student runs an experiment with two carts on a low-friction track. As measured in the Earth reference frame, cart 1 (m = 0.48 kg ) moves from left to right at 1.0 m/s as the student walks along next to it at the same velocity. Let the +x direction be to the right. a) What velocity v⃗ E2,i in the Earth reference frame must cart 2 (m = 0.16 kg ) have before the collision if, in the student's...
An air-track cart with mass m1=0.30kg and initial speed v0=0.80m/s collides with and sticks to a...
An air-track cart with mass m1=0.30kg and initial speed v0=0.80m/s collides with and sticks to a second cart that is at rest initially. If the mass of the second cart is m2=0.46kg, how much kinetic energy is lost as a result of the collision?
An air-track cart with mass m1=0.30kg and initial speed v0=0.95m/s collides with and sticks to a...
An air-track cart with mass m1=0.30kg and initial speed v0=0.95m/s collides with and sticks to a second cart that is at rest initially. Part A If the mass of the second cart is m2=0.44kg, how much kinetic energy is lost as a result of the collision? Express your answer to two significant figures and include appropriate units.
An air-track cart with mass m1=0.28kg and initial speed v0=0.80m/s collides with and sticks to a...
An air-track cart with mass m1=0.28kg and initial speed v0=0.80m/s collides with and sticks to a second cart that is at rest initially. Part A If the mass of the second cart is m2=0.53kg, how much kinetic energy is lost as a result of the collision? Express your answer to two significant figures and include appropriate units.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT