In: Statistics and Probability
5.
California and Washington state both started reporting COVID-19 cases at approximately the same time. Suppose a researcher wants to study the fatality rate of diagnosed COVID-19 cases in the 2 states.
a. What null hypothesis should be used? Pick one and explain.
i. California has a higher fatality rate than Washington.
ii. California has lower higher fatality rate than
Washington.
iii. California has a different fatality (possibly higher, possibly
lower) rate than Washington. iv. California and Washington have the
same fatality rate.
b. What alternate hypothesis should be used? Pick one and explain.
i. California has a higher fatality rate than Washington.
ii. California has lower higher fatality rate than
Washington.
iii. California has a different fatality (possibly higher, possibly
lower) rate than Washington. iv. California and Washington have the
same fatality rate.
c. As of 3/24/2020, California had 2220 cases and 100 fatalities, compared to 111 fatalities in 2221 cases in Washington. Use your calculator to carry out a suitable hypothesis test. Report the p-value of the test, determine whether or not to reject the null, and state what should be concluded. Use ? = .05.
Ans 5 )
a. the null hypothesis should be used is
iv. California and Washington have the same fatality rate.
becasue the claim is that California and Washington state both started reporting COVID-19 cases at approximately the same time
b. the alternate hypothesis should be used
iii. California has a different fatality (possibly higher, possibly
lower) rate than Washington.
c.
Z Test for Differences in Two Proportions | |
Data | |
Hypothesized Difference | 0 |
Level of Significance | 0.05 |
Group 1 | |
Number of Items of Interest | 100 |
Sample Size | 2220 |
Group 2 | |
Number of Items of Interest | 111 |
Sample Size | 2221 |
Intermediate Calculations | |
Group 1 Proportion | 0.045045045 |
Group 2 Proportion | 0.049977488 |
Difference in Two Proportions | -0.00493244 |
Average Proportion | 0.0475 |
Z Test Statistic | -0.7726 |
Two-Tail Test | |
Lower Critical Value | -1.9600 |
Upper Critical Value | 1.9600 |
p-Value | 0.4398 |
Do not reject the null hypothesis |
let p1 =population proportion of fatality in California.
p2 = population proportion of fatality in Washington .
Ho:p1= p2
Ha:p1 p2
the p-value of the test is 0.4398
since p value is greater than 0.05 so we do not reject the null hypothesis and conclude that the fatality rate is same in California and Washington