Question

In: Mechanical Engineering

Consider a Carnot-cycle heat pump with R-410a as the working fluid. Heat is rejected from the...

Consider a Carnot-cycle heat pump with R-410a as the working fluid. Heat is rejected from the R410a at 35 oC, during which process the R-410a changes from saturated vapor to saturated liquid. The heat is transferred to the R-410a at 0 oC. The specific volume during the isothermal heat addition process at 0 oC changes from 0.00841 m3 /kg to 0.02994 m3 /kg.

a. Show the cycle on P-T, P-v, and T-v diagrams.

b. Find the quality at the beginning and at the end of the isothermal heat addition process at 0 oC.

c. Find the pressure and specific volume at the four points.

d. Find the specific heat and specific work at each process.

e. Find the net specific heat and the net specific work during the cycle.

f. Determine the COP of the cycle using heat and work.

g. Determine the COP of the cycle using temperatures.

Solutions

Expert Solution


Related Solutions

A Carnot-cycle refrigerator rejects heat at the pressure of 1000 kPa during which the working fluid...
A Carnot-cycle refrigerator rejects heat at the pressure of 1000 kPa during which the working fluid R -134a changes from saturated vapor to saturated liquid. The heat is added to the cycle at the pressure of 320 kPa. Show the cycle in a T-s diagram and determine the coefficient of performance of the cycle using a) the first law of thermodynamics b) the Carnot cycle efficiency equation and c) the T-s diagram.
The figure below provides the T–s diagram of a Carnot heat pump cycle for which the...
The figure below provides the T–s diagram of a Carnot heat pump cycle for which the substance is ammonia, where x3 = 70%. Determine the net work input required, in kJ, for 50 cycles of operation and 0.1 kg of substance. Note that work is positive going into the heat pump.
2. A Carnot cycle using water as the working fluid operates within the wet region (saturated...
2. A Carnot cycle using water as the working fluid operates within the wet region (saturated conditions). If the high pressure for the process is 500 psia and the low pressure is 20 psia, what is the thermal efficiency for the cycle?  State your answer as a percent to one decimal place. Example: 32.5 7. In a Rankine cycle steam enters the turbine at 900 psia and 1000oF and exhausts at 1 psia. Determine the heat supplied to the cycle in...
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity...
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity of 60,000 Btu/h. The condenser operates at 180 lbf/in.2, and the evaporator temperature is 0°F. The refrigerant is a saturated vapor at the evaporator exit and a liquid at 110°F at the condenser exit. Pressure drops in the flows through the evaporator and condenser are negligible. The compression process is adiabatic, and the temperature at the compressor exit is 180°F. Determine (a) the mass...
Refrigerant 134a is the working fluid in a vapor-compression heat pump that provides 35 kW to...
Refrigerant 134a is the working fluid in a vapor-compression heat pump that provides 35 kW to heat a dwelling on a day when the outside temperature is below freezing. Saturated vapor enters the compressor at 2.1 bar, and saturated liquid exits the condenser, which operates at 8 bar. Determine for an isentropic compressor efficiency of 75%: (a) the refrigerant mass flow rate, in kg/s. (b) the magnitude of the compressor power, in kW. (c) the coefficient of performance.
A Carnot heat pump moves heat to a warm house at 24°C at a rate of...
A Carnot heat pump moves heat to a warm house at 24°C at a rate of 300kW. The heat is pumped from the outside air at 7°C. What is the power required by the heat pump? What is the rate of change of entropy for each of the thermal reservoirs (the house, and the outside air)? Does this heat pump satisfy the second law of thermodynamics increase of entropy principle?
An ideal refrigeration cycle utilizes R-134a as a working fluid. If the fluid enters the compressor...
An ideal refrigeration cycle utilizes R-134a as a working fluid. If the fluid enters the compressor as saturated vapor at 6 C and enters a throttling valve as a saturated liquid at 1.2MPa. Assuming the mass flow rate of fluid is 1 kg/sec. 1. The heat received by the fluid (kJ) is 2. The heat received by the surroundings (kJ) is 3. The power input to the compressor (kJ) is 4. The coefficient of performance is
11. Consider a Carnot cycle with 2.25 moles of a diatomic ideal gas as the working...
11. Consider a Carnot cycle with 2.25 moles of a diatomic ideal gas as the working substance (assume Cv = 2.5*R). The following are the steps of the cycle: Step I: reversible, isothermal expansion at 300.0 °C from 10.00 L to 16.00 L. Step II: reversible, a diabatic expansion until the temperature decreases to 50.0 °C. Step III: reversible, isothermal compression at 50.0 °C. Step IV: reversible, adiabatic compression back to the initial conditions. A. Calculate q, w, ΔU, ΔH,...
a. Refrigerators make use of the heat cycles, such as the Carnot cycle, but in order...
a. Refrigerators make use of the heat cycles, such as the Carnot cycle, but in order to remove heat from the cold source (fridge) and put that energy into the hot source (the enrivonment), another energy source must be added to the system to make this occur. The minimum energy to be supplied follows the equation given below. Find an expression for the coefficient of performance in terms of Th and Tc.                         coefficient of performance (c) = heat...
A Carnot cycle uses 1.00 mol of a monoatomic perfect gas as the working substance from...
A Carnot cycle uses 1.00 mol of a monoatomic perfect gas as the working substance from an initial state of 10.0 atm and 600 K. It expands isothermally to a pressure of 1.00 atm (step 1), and then adiabatically to a temperature of 300 K, (step 2). This expansion is followed by an isothermal compression (step 3), and then an adiabatic compression (step 4) back to the initial state. Determine the values of q, w, ÄU, ÄH, ÄS, and ÄSsurr...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT