Question

In: Statistics and Probability

Customers arrive in a certain shop according to an approximate Poissonprocess on the average of two...

Customers arrive in a certain shop according to an approximate Poissonprocess on the average of two every 6 minutes.

(a) Using the Poisson distribution calculate the probability of two or more customersarrive in a 2-minute period.

(b) Consider X denote number of customers and X follows binomial distribution withparametersn= 100. Using the binomial distribution calculate the probability oftwo or more customers arrive in a 2-minute period.

(c) Let Y denote the waiting time in minutes until the first customer arrives. (i) Whatis the pdf ofY? (ii) Findq1=π0.75

(d) Let Y denote the waiting time in minutes until the first customer arrives. What isthe probability that the shopkeeper will have to wait more than 3 minutes for thearrival of the first customer ?

(e) What is the probability that shopkeeper will wait more than 3 minutes before bothof the first two customers arrive?

Solutions

Expert Solution


Related Solutions

Customers arrive in a certain shop according to an approximate Poisson process on the average of...
Customers arrive in a certain shop according to an approximate Poisson process on the average of two every 6 minutes. (a) Using the Poisson distribution calculate the probability of two or more customers arrive in a 2-minute period. (b) Consider X denote number of customers and X follows binomial distribution with parameters n= 100. Using the binomial distribution calculate the probability oftwo or more customers arrive in a 2-minute period. (c) Let Y denote the waiting time in minutes until...
Customers arrive at a department store according to a Poisson process with an average of 12...
Customers arrive at a department store according to a Poisson process with an average of 12 per hour. a. What is the probability that 3 customers arrive between 12:00pm and 12:15pm? b. What is the probability that 3 customers arrive between 12:00pm and 12:15pm and 6 customers arrive between 12:30pm and 1:00pm? c. What is the probability that 3 customers arrive between 12:00pm and 12:15pm or 6 customers arrive between 12:30pm and 1:00pm? d. What is the probability that a...
Customers arrive at a hair salon according to a Poisson process with an average of 16...
Customers arrive at a hair salon according to a Poisson process with an average of 16 customers per hour. The salon has just one worker due to covied-19 restriction. Therefore, the salon must close whenever the worker leaves. assume that customers who arrive while the salon is closed leave immediately and don’t wait until the worker returns. The salon is closed on weekends. a. What is the probability that at most (less than) four customers arrive in the hour before...
Customers arrive at a cafe every 2 minutes on average according to a Poisson process. There...
Customers arrive at a cafe every 2 minutes on average according to a Poisson process. There are 2 employees working at the bar providing customer service, i.e., one handling customer orders and another handling payments. It takes an average of 1 minute to complete each order (exponentially distributed). Based on the above: f. What are the service time probability density and cumulative distribution functions? g. What percentage of customer orders will be prepared in exactly 2 minutes? h. What are...
Suppose we have a single server in a shop and customers arrive in the shop with...
Suppose we have a single server in a shop and customers arrive in the shop with a Poisson arrival distribution at a mean rate of λ=0.5 customers per minute. The interarrival time have an exponential distribution with the average inter-arrival time being 2 minutes. The server has an exponential service time distribution with a mean service rate of 4 customers per minute. Calculate: 1. Overall system utilization 2. Number of customers in the system 3. Number of customers in the...
A queueing system serves two types of customers. Type 1 customers arrive according to a Poisson...
A queueing system serves two types of customers. Type 1 customers arrive according to a Poisson process with a mean rate of 5 per hour. Type 2 customers arrive according to a Poisson process at a mean rate of 3 per hour. The system has two servers, both of which serve both types of customer. All service times have exponential distribution with a mean of 10 minutes. Service is provided on a first-come-first-served basis. a. What is the probability distribution...
A queueing system serves two types of customers. Type 1 customers arrive according to a Poisson...
A queueing system serves two types of customers. Type 1 customers arrive according to a Poisson process with a mean rate of 5 per hour. Type 2 customers arrive according to a Poisson process at a mean rate of 3 per hour. The system has two servers, both of which serve both types of customer. All service times have exponential distribution with a mean of 10 minutes. Service is provided on a first-come-first-served basis. a. What is the probability distribution...
A queueing system serves two types of customers. Type 1 customers arrive according to a Poisson...
A queueing system serves two types of customers. Type 1 customers arrive according to a Poisson process with a mean rate of 5 per hour. Type 2 customers arrive according to a Poisson process at a mean rate of 3 per hour. The system has two servers, both of which serve both types of customer. All service times have exponential distribution with a mean of 10 minutes. Service is provided on a first-come-first-served basis. a. What is the probability distribution...
A barber shop has an average of 12 customers between 8.00am and 9.00am every Saturday. Customers arrive according to Poisson distribution. Let X represent the time between arrivals.
A barber shop has an average of 12 customers between 8.00am and 9.00am every Saturday. Customers arrive according to Poisson distribution. Let X represent the time between arrivals. (a) Construct the distribution for the random variable X? (b) Find the mean and standard deviation of X. (c) What is the probability that the time between consecutive arrivals (customers) will fall between 3 and 6 minutes?
Customers arrive at a two-server system according to a Poisson process having rate λ = 5....
Customers arrive at a two-server system according to a Poisson process having rate λ = 5. An arrival finding server 1 free will begin service with that server. An arrival finding server 1 busy and server 2 free will enter service with server 2. An arrival finding both servers busy goes away. Once a customer is served by either server, he departs the system. The service times at server i are exponential with rates μi, where μ1 = 4, μ2...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT