In: Statistics and Probability
A simple random sample with
n = 56
provided a sample mean of 29.5 and a sample standard deviation of 4.4.
A. Develop a 90% confidence interval for the population mean.
B. Develop a 95% confidence interval for the population mean.
C. Develop a 99% confidence interval for the population mean.
Solution :
Given that,
Point estimate = sample mean = = 29.5
sample standard deviation = s = 4.4
sample size = n = 56
Degrees of freedom = df = n - 1 = 56 - 1 = 55
a) At 90% confidence level
= 1 - 90%
= 1 - 0.90 =0.10
/2
= 0.05
t/2,df
= 1.673
Margin of error = E = t/2,df * (s /n)
= 1.673 * ( 4.4/ 56)
Margin of error = E = 1.67
The 90% confidence interval estimate of the population mean is,
± E
29.5 ± 1.67
(27.83 , 31.17)
b) At 95% confidence level
= 1 - 95%
= 1 - 0.95 =0.05
/2 = 0.025
t/2,df = 2.004
Margin of error = E = t/2,df * (s /n)
= 2.004 * ( 4.4/ 56)
Margin of error = E = 1.18
The 95% confidence interval estimate of the population mean is,
± E
28.32 ± 1.18
(27.14 , 29.5)
c) At 99% confidence level
= 1 - 99%
= 1 - 0.99 =0.01
/2 = 0.005
t/2,df = 2.668
Margin of error = E = t/2,df * (s /n)
= 2.668 * ( 4.4/ 56)
Margin of error = E = 1.57
The 95% confidence interval estimate of the population mean is,
± E
28.32 ± 1.57
(26.75 , 29.89)