In: Computer Science
2.Explain the ETL process in detail and why it is important? Provide examples.
`Hey,
Note: If you have any queries related to the answer please do comment. I would be very happy to resolve all your queries.
ETL is a process that extracts the data from different source systems, then transforms the data (like applying calculations, concatenations, etc.) and finally loads the data into the Data Warehouse system. Full form of ETL is Extract, Transform and Load.
It's tempting to think a creating a Data warehouse is simply extracting data from multiple sources and loading into database of a Data warehouse. This is far from the truth and requires a complex ETL process. The ETL process requires active inputs from various stakeholders including developers, analysts, testers, top executives and is technically challenging.
In order to maintain its value as a tool for decision-makers, Data warehouse system needs to change with business changes. ETL is a recurring activity (daily, weekly, monthly) of a Data warehouse system and needs to be agile, automated, and well documented.
Step 1) Extraction
In this step, data is extracted from the source system into the staging area. Transformations if any are done in staging area so that performance of source system in not degraded. Also, if corrupted data is copied directly from the source into Data warehouse database, rollback will be a challenge. Staging area gives an opportunity to validate extracted data before it moves into the Data warehouse.
Data warehouse needs to integrate systems that have different
DBMS, Hardware, Operating Systems and Communication Protocols. Sources could include legacy applications like Mainframes, customized applications, Point of contact devices like ATM, Call switches, text files, spreadsheets, ERP, data from vendors, partners amongst others.
Hence one needs a logical data map before data is extracted and loaded physically. This data map describes the relationship between sources and target data.
Three Data Extraction methods:
Irrespective of the method used, extraction should not affect performance and response time of the source systems. These source systems are live production databases. Any slow down or locking could effect company's bottom line.
Some validations are done during Extraction:
Step 2) Transformation
Data extracted from source server is raw and not usable in its original form. Therefore it needs to be cleansed, mapped and transformed. In fact, this is the key step where ETL process adds value and changes data such that insightful BI reports can be generated.
In this step, you apply a set of functions on extracted data. Data that does not require any transformation is called as direct move or pass through data.
In transformation step, you can perform customized operations on data. For instance, if the user wants sum-of-sales revenue which is not in the database. Or if the first name and the last name in a table is in different columns. It is possible to concatenate them before loading.
Following are Data Integrity Problems:
Validations are done during this stage
Step 3) Loading
Loading data into the target datawarehouse database is the last step of the ETL process. In a typical Data warehouse, huge volume of data needs to be loaded in a relatively short period (nights). Hence, load process should be optimized for performance.
In case of load failure, recover mechanisms should be configured to restart from the point of failure without data integrity loss. Data Warehouse admins need to monitor, resume, cancel loads as per prevailing server performance.
Types of Loading:
Load verification
Kindly revert for any queries
Thanks.