Question

In: Physics

A 7.0-kg rock at a temperature of 30°C is dropped into a shallow lake at 30°C...

A 7.0-kg rock at a temperature of 30°C is dropped into a shallow lake at 30°C from a height of 1.0×10^5 m. What is the resulting change in entropy of the universe? (b) If the temperature of the rock is 100°C when it is dropped, what is the change of entropy of the universe? Assume that air friction is negligible (not a good assumption) and that c=860J/kg·K is the specific heat of the rock.

Solutions

Expert Solution

-----------------------------------------------------------------------------------------------


Related Solutions

1.45 kg    of ice at   -5 ∘C    is dropped into   31 kg    of water at temperature   15.3 ∘C   . Part...
1.45 kg    of ice at   -5 ∘C    is dropped into   31 kg    of water at temperature   15.3 ∘C   . Part A - Final Temperature What is the final temperature of the system? (If I've set the problem up right, you should be given numbers such that all of the ice has melted.)   Tf   =    ∘C    Part B - Entropy of Warming Ice What is the change in entropy of the ice, as it warms up before melting? S = J/K Part C - Entropy...
An ice cube of mass 0.029 kg and temperature -13 ∘C is dropped into a styrofoam...
An ice cube of mass 0.029 kg and temperature -13 ∘C is dropped into a styrofoam cup containing water of mass 0.4 kg and temperature 20 ∘C. Calculate the final temperature in degrees celcius and give your answer to one decimal place. (For simplicity, we ignore here the temperature change of the cup.) The specific heat of ice is 2200 J/kg ∘C and the specific heat of water is 4186 J/kg ∘C. The latent heat of fusion of ice is...
A nickel block that weighs 30 kg and with an initial temperature of 200 ⁰C is...
A nickel block that weighs 30 kg and with an initial temperature of 200 ⁰C is dropped into an insulated tank that contains 150 L of water at 25 ⁰C. a. Briefly state what the definition of entropy is. [2 marks] b. State two relevant assumptions for this question. [2 marks] c. Calculate the final equilibrium temperature for this system. Assume that the density and specific heat of water at 25 ⁰C are ρ= 997 kg/m3 and cp = 4.18...
A mass of 0.07 kg of air at a temperature of 30°C and pressure 100 kPa...
A mass of 0.07 kg of air at a temperature of 30°C and pressure 100 kPa is compressed to a pressure of 600 kPa, according to the law: (i.e. Polytropic process, n=1.3). Determine: i.The final volume ii.The final temperature iii.The work transfer iv.The change in internal energy v.The heat transfer
The water in a shallow lake is at equilibrium with carbon dioxide in the air. The...
The water in a shallow lake is at equilibrium with carbon dioxide in the air. The pH was measured to be 7.0. What is the alkalinity of the water in mg/L as CaCO3? The partial pressure of CO2 is 1 X 10-1.5 atm. The Henry's constant for CO2 is 3.162 X 10-4 moles/(L-atm) at 25oC.
The initial temperature of the lake at the edge of the mountain glacier is 6.40'C, and...
The initial temperature of the lake at the edge of the mountain glacier is 6.40'C, and the volume of water is 185,000m^3. There is iceberg which the mass is 17.3*10^6kg, temperature is -10'C. The iceberg fell and floated on the lake. If there is no energy exchange except between the lake and the iceberg, what is the final temperature of the lake and the iceberg? If there is remaining ice, how much ice is left?
The temperature right above the lake was 5°C, Your Grandpa said the lake wont crack, it...
The temperature right above the lake was 5°C, Your Grandpa said the lake wont crack, it is 65 feet deep and the temperature at the bottom of the lake is 20°C and he wanted to walk on the lake and start ice fishing. You didnt know if you should listen to Grandpa so you needed to calculate the thickness of the ice to see if it can hold. Your mass is 80 kg and your grandpas mass is 54 kg....
Question B5 (a) A very hot 0.8 kg copper cylinder at temperature 365.84℃ is dropped into...
Question B5 (a) A very hot 0.8 kg copper cylinder at temperature 365.84℃ is dropped into a 0.2 kg copper bowl contains 0.3 kg of water at 20℃. The final temperature of the system is 85℃. Given that specific heat of copper 386 J/kg·K and specific heat of water 4190 J/kg·K. (i) Find the entropy change ∆S1 of the copper bowl and water. (ii) Find the entropy change ∆S2 of the copper cylinder. (iii) Find the net entropy change ∆Snet...
A 1.50-kg iron horseshoe initially at 550°C is dropped into a bucket containing 18.0 kg of...
A 1.50-kg iron horseshoe initially at 550°C is dropped into a bucket containing 18.0 kg of water at 20.0°C. What is the final temperature of the water–horseshoe system? Ignore the heat capacity of the container and assume a negligible amount of water boils away.
A 0.26 kg iron horseshoe that is initially at 787 ◦C is dropped into a bucket...
A 0.26 kg iron horseshoe that is initially at 787 ◦C is dropped into a bucket containing 20 kg of water at 34◦C. What is the final equilibrium temperature? Neglect any energy transfer to or from the surroundings and assume the specific heat of iron is 448 J/kg · ◦ C . The specific heat of water is 4186 J/kg · ◦ C . Answer in units of ◦C
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT