Question

In: Physics

A 1.50-kg iron horseshoe initially at 550°C is dropped into a bucket containing 18.0 kg of...

A 1.50-kg iron horseshoe initially at 550°C is dropped into a bucket containing 18.0 kg of water at 20.0°C. What is the final temperature of the water–horseshoe system? Ignore the heat capacity of the container and assume a negligible amount of water boils away.

Solutions

Expert Solution

I hope you understood the problem and got your answers, If yes rate me!! or else comment for a better solutions.


Related Solutions

A 0.26 kg iron horseshoe that is initially at 787 ◦C is dropped into a bucket...
A 0.26 kg iron horseshoe that is initially at 787 ◦C is dropped into a bucket containing 20 kg of water at 34◦C. What is the final equilibrium temperature? Neglect any energy transfer to or from the surroundings and assume the specific heat of iron is 448 J/kg · ◦ C . The specific heat of water is 4186 J/kg · ◦ C . Answer in units of ◦C
A 10.8 kg of nickel initially at 202 ∘C is dropped into an insulated basin containing...
A 10.8 kg of nickel initially at 202 ∘C is dropped into an insulated basin containing 23.6 kg of water initially at 27.8 ∘C. Assume that he water does not undergo any phase change when the hot metal was initially dropped into the water. a) Assuming no heat losses from the container, what is the final equilibrium temperature between the water and the nickel? ∘C b) What would the equilibrium temperature be if the nickel had lost 479 kJ of...
A blacksmith heats a 1.4 kg iron horseshoe to 500?C , then plunges it into a...
A blacksmith heats a 1.4 kg iron horseshoe to 500?C , then plunges it into a bucket containing 20 kg of water at 15?C What is the equilibrium temperature? Express your answer using two significant figures. .
An 18.0 g ice cube initially at -10 Celsius is dropped into 120g of water initiallly...
An 18.0 g ice cube initially at -10 Celsius is dropped into 120g of water initiallly at 25 Celsius. What is the final temperature of the system after all of the ice has melted? Assume that no heat is lost to the container or the surroundings
1. In carbonitriding of an iron-carbon alloy (steel) initially containing 0.05 wt% C and no nitrogen...
1. In carbonitriding of an iron-carbon alloy (steel) initially containing 0.05 wt% C and no nitrogen is subjected to carbonitriding at an elevated temperature and in an atmosphere that gives a surface carbon concentration constant at 0.5 wt% and surface nitrogen concentration constant 0.2 wt%. Find the ratio of the diffusion coefficients ‘C in steel’/‘N in steel’ if after 36 h the concentration of carbon at a position 0.4 mm below the surface is 0.35 wt%, and the concentration of...
A 25 g piece of hot iron is dropped into a glass of ice water containing...
A 25 g piece of hot iron is dropped into a glass of ice water containing 15.0 g of ice and 50.0 g of water. If the iron loses 8.00 kJ of energy to the ice water in achieving equilibrium, what is the equilibrium temperature? ∆Hfus = 6.01 kJ/mol
A 286.0 g piece of granite, heated to 556.0°C in a campfire, is dropped into 1.50...
A 286.0 g piece of granite, heated to 556.0°C in a campfire, is dropped into 1.50 L water (d = 1.00 g/mL) at 25.0°C. The molar heat capacity of water is cp,water = 75.3 J/(mol ·°C), and the specific heat of granite iscs,granite = 0.790 J/(g ·°C). Calculate the final temperature of the granite.
Model 2 - Oxidation of Iron C) 1.00 kg iron reacts with 0.86 kg oxygen from...
Model 2 - Oxidation of Iron C) 1.00 kg iron reacts with 0.86 kg oxygen from the atmosphere to produce iron(III) oxide {aka rust}. In model C, what is the total mass of iron and oxygen in kg? Convert to your answer to grams and show how you would do this mathematical operation, and what is the maximum possible mass of iron(III) oxide product? Please explain your answer
1.45 kg    of ice at   -5 ∘C    is dropped into   31 kg    of water at temperature   15.3 ∘C   . Part...
1.45 kg    of ice at   -5 ∘C    is dropped into   31 kg    of water at temperature   15.3 ∘C   . Part A - Final Temperature What is the final temperature of the system? (If I've set the problem up right, you should be given numbers such that all of the ice has melted.)   Tf   =    ∘C    Part B - Entropy of Warming Ice What is the change in entropy of the ice, as it warms up before melting? S = J/K Part C - Entropy...
A 100 g piece of copper, initially at 95,0 C , is dropped into 200 g...
A 100 g piece of copper, initially at 95,0 C , is dropped into 200 g of water. If initial temperature of water is 1 5 C, what is final temperature of the system, if the heat lost to surounding is ignored please, step by step solution.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT