Question

In: Physics

A roller-coaster car speeds down a hill past point A where R1 = 11.6 m and...

A roller-coaster car speeds down a hill past point A where R1 = 11.6 m and then rolls up a hill past point B where R2 = 15.2 m, as shown below.

(a) The car has a speed of 20.0 m/s at point A. if the track exerts a normal force on the car of 2.08 104 N at this point, what is the mass of the car?

(b) What is the maximum speed the car can have at point B for the gravitational force to hold it on the track?

Solutions

Expert Solution

You typed the normal force is 2.08 104 N, but I assuming this value is 2.08 x 10^4 [N].

(a) If you draw a free body diagram for car at point A, then N goes upward, mg goes downward and the remained force makes centripetal force to the center of circle.

Therefore, N - mg = Fc , and Fc = (m v^2 )/ r1

If you re-arrange the equation for m ,

m = N / ( g + v^2/r1 ) substitute given values to the equation gives

m = 469.71 kg ( very light car )

(b) you also need to draw a free body diagram. At point B, the normal force goes zero when the speed is maximum. If the speed is bigger than the maximum speed, then the car will fly away and there will be no normal force. In this situation, the weight is the same as the centripetal force.

mg = Fc = (m v^2 / r2 )

solve the equation gives v = sqrt( r2 g ) = 12.21 m/s ; this is the maximum speed at B.

Hope this helps

If you have further question please let me know.


Related Solutions

A roller-coaster track is being designed so that the roller-coaster car can safely make it around...
A roller-coaster track is being designed so that the roller-coaster car can safely make it around the circular vertical loop of radius R = 24.5 m on the frictionless track. The loop is immediately after the highest point in the track, which is a height h above the bottom of the loop. What is the minimum value of h for which the roller-coaster car will barely make it around the vertical loop?
A roller coaster car has a mass of 250 Kg. The car is towed to the...
A roller coaster car has a mass of 250 Kg. The car is towed to the top of a 30 m hill where it is released from rest and allowed to roll.   The car plunges down the hill, then up an 8 m hill and through a loop with a radius of 8 m. Assuming no friction: (8 points) What is the potential energy of the car at the top of the 30 m hill? What are the Kinetic Energy...
Hill Incorporated purchased metal to build a new roller coaster on December 31, 2020. Hill provided...
Hill Incorporated purchased metal to build a new roller coaster on December 31, 2020. Hill provided a $500,000 down payment and agreed to pay the balance in equal instalments of $340,000 every December 31 for five years. Hill could have received a loan from the bank for this amount at 9% interest. 1.Prepare the journal entries that would be recorded for the purchase and for the payments and interest on December 31, 2020, 2021, 2022, 2023, 2024, and 2025.
A roller coaster needs 100,000 N of energy to make it over the next hill. It...
A roller coaster needs 100,000 N of energy to make it over the next hill. It starts at 110 m high from rest and falls to 10 m high from the ground. The coaster has a mass of 100 kg. The value of gravity is 9.8 m/s2, will the coaster make it? Why?
A roller coaster reaches the top of the steepest hill with a speed of 6.8 km/h...
A roller coaster reaches the top of the steepest hill with a speed of 6.8 km/h . It then descends the hill, which is at an average angle of 35 ∘ and is 45.0 m long. Q: What will its speed be when it reaches the bottom? Assume μk = 0.18.
A roller coaster reaches the top of the steepest hill with a speed of 6.80 km/h....
A roller coaster reaches the top of the steepest hill with a speed of 6.80 km/h. It then descends the hill, which is at an average angle of 35° and is 56.0 m long. What will its speed be when it reaches the bottom? Assume µk = 0.16.
1) A roller coaster car on the leveled portion of a track is moving at a...
1) A roller coaster car on the leveled portion of a track is moving at a speed of 35 m/s, heading toward a hump. Based on the principle of conservation of energy, predict what is the velocity of the car on the top of the hump if the lost of energy due to friction and air resistance is negligiable. The highest point of the hump is 14 above the leveled track.
A car of a roller coaster has a total mass of 1000 kg including the passenger....
A car of a roller coaster has a total mass of 1000 kg including the passenger. At position A (the top of the first incline), it cruises at 2m/s. Calculate its velocity at position C at the top of the second incline which is 5 m below the top of the first incline, if there are no losses due to friction on the track or air drag. Calculate the average resistance force (due to friction and drag) between points A...
A) a roller coaster it's traveling with a velocity of 20 m/s at the top of...
A) a roller coaster it's traveling with a velocity of 20 m/s at the top of an incline. If the incline has a height of 10m, determine the coasters velocity at the middle of the incline. Neglect friction and use 10 m/s^2 for gravity B) a vehicle weighing 15000 nt is traveling at 50 m/s in the i direction. It collides with a wall and stops in 1/10 second. If the collision was inelastic, determine the average force of the...
A roller coaster car with its three passengers (a total of 450̅ kg) is pulled up...
A roller coaster car with its three passengers (a total of 450̅ kg) is pulled up to the top of a 30.0 meter hill where it is released at a speed of 1.00 meter per second to begin its hurtle down the track toward a 15.0 meter diameter loop the loop at the bottom. Unfortunately, the maintenance crew still has some work to do on the old rusty roller coaster track and the average frictional force on the 65.0 meter...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT