Question

In: Statistics and Probability

We know that based on the Binomial distribution, probability of x successes in n trials when...

We know that based on the Binomial distribution, probability of x successes in n trials when the probability of success is (p) can be calculated by multiplying Combinations of n items x by x, multiplied by the probability of success (p) raised to (x) and multiplied by (1-p) raised to (n-x).

1. If probability of having a child who will study business in college (probability of success) is 0.25, what is the probability of a family with 6 children will have 3 of them study business in college

2. If probability of catching a cold is 0.03, what is the probability of 3 people out of six catching a cold?

3. If probability of catching a cold is 0.97, what is the probability of 3 people out of six catching a cold?

Solutions

Expert Solution


Related Solutions

A binomial probability experiment is conducted with the given parameters. Compute the probability of x successes in the n independent trials of he experiment.
A binomial probability experiment is conducted with the given parameters. Compute the probability of x successes in the n independent trials of he experiment. n=9, p=0.3, x≤3The probabity of x≤3 succenses is _______ (Round to four decimal places as needed.)
1. Given a binomial distribution, find the probability of 10 successes out of 15 trials, given...
1. Given a binomial distribution, find the probability of 10 successes out of 15 trials, given p= .85 2. 40% of the population have brown eyes. find the probability that out of 25 people randomly selected at the most 15 have brown eyes. 3. a test consists of 25 multiple choice questions with 5 possible answers, 1 of standard deviation and the probability of getting 8 correct.
Assume that a procedure yields a binomial distribution with n trials and the probability of success...
Assume that a procedure yields a binomial distribution with n trials and the probability of success for one trial is p. Use the given values of n and p to find the mean mu and standard deviation sigma. ?Also, use the range rule of thumb to find the minimum usual value mu minus 2 sigma and the maximum usual value mu plus 2 sigma. n n=1510?, p=4/ 5
In the binomial probability distribution, let the number of trials be n = 4, and let...
In the binomial probability distribution, let the number of trials be n = 4, and let the probability of success be p = 0.3310. Use a calculator to compute the following. (a) The probability of three successes. (Round your answer to three decimal places.) (b) The probability of four successes. (Round your answer to three decimal places.) (c) The probability of three or four successes. (Round your answer to three decimal places.)
assume that a procedure yields a binomial distribution with n=7 trials and the probability of success...
assume that a procedure yields a binomial distribution with n=7 trials and the probability of success of p=0.30 use a binomial probability table to find the probability that the number of successes is exactly 4, at least2 and at most 3
assume that a procedure yields a binomial distribution with n=7 trials and the probability of success...
assume that a procedure yields a binomial distribution with n=7 trials and the probability of success of p=0.30 use a binomial probability table to find the probability that the number of successes is exactly 4, at least2 and at most 3
How can you demonstrate that the probability of X successes in a binomial distribution is given...
How can you demonstrate that the probability of X successes in a binomial distribution is given by P(X=x)=nCx p^x q^(n-x)
Assuming a random variate follows a binomial distribution with x "successes" in n "experiments", and the...
Assuming a random variate follows a binomial distribution with x "successes" in n "experiments", and the probability of a single success in any given experiment being p; compute: (a) Pr(x=2, n=8, p=0.47) (b) Pr(3 < X ≤ 5) when n = 9 and p = 0.6 (c) Pr(X ≤ 3) when n = 9 and p = 0.13 (d) The probability that the number of successes is more than 1 when n = 13 and p = 0.19 (e) The...
We have a binomial experiment with n = 18 trials, each with probability p = 0.15...
We have a binomial experiment with n = 18 trials, each with probability p = 0.15 of a success. A success occurs if a student withdraws from a class, so the number of successes, x, will take on the values 0, 1, and 2. The probability of each x value, denoted f(x), can be found using a table like the one below. Note that these values are rounded to four decimal places. n x p 0.10 0.15 0.20 0.25 18...
Calculate each binomial probability:    (a) Fewer than 4 successes in 9 trials with a 10...
Calculate each binomial probability:    (a) Fewer than 4 successes in 9 trials with a 10 percent chance of success. (Round your answer to 4 decimal places.)      Probability       (b) At least 1 successe in 5 trials with a 10 percent chance of success. (Round your answer to 4 decimal places.)      Probability       (c) At most 11 successes in 19 trials with a 70 percent chance of success. (Round your answer to 4 decimal places.)   ...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT