Question

In: Statistics and Probability

The following linear regression model can be used to predict ticket sales at a popular water...

The following linear regression model can be used to predict ticket sales at a popular water park (the correlation is significant).

Ticket sales per hour = -631.25 + 11.25(current temperature in °F)

Choose the statement that best reflects the meaning of the slope in this context.

Group of answer choices

The slope is slippery.

The slope tells us that a one degree increase in temperature is associated with an average increase in ticket sales of 11.25 tickets.

The slope tells us that if ticket sales are decreasing there must have been a drop in temperature.

The slope tells us that high temperatures are causing more people to buy tickets to the water park.

Solutions

Expert Solution


Related Solutions

Question 4 A simple linear regression model was used in order to predict y, duration of...
Question 4 A simple linear regression model was used in order to predict y, duration of relief from allergy, from x, dosage of medication. A total of n=10 subjects were given varying doses, and their recovery times noted. Here is the R output. summary(lmod4) ## ## Call: ## lm(formula = y ~ x) ## ## Residuals: ##     Min      1Q Median      3Q     Max ## -3.6180 -1.9901 -0.4798 2.2048 3.7385 ## ## Coefficients: ##             Estimate Std. Error t value Pr(>|t|)    ## (Intercept)...
Linear Regression Linear regression is used to predict the value of one variable from another variable....
Linear Regression Linear regression is used to predict the value of one variable from another variable. Since it is based on correlation, it cannot provide causation. In addition, the strength of the relationship between the two variables affects the ability to predict one variable from the other variable; that is, the stronger the relationship between the two variables, the better the ability to do prediction. What is one instance where you think linear regression would be useful to you in...
A linear regression model is generated to predict the daily increase in covid 19 cases in...
A linear regression model is generated to predict the daily increase in covid 19 cases in Mumbai . y=2 X1 + 10 X2 + b(100) where Y= number of new cases daily, X1= no of incoming passenger flights in Mumbai, and X2= no of passenger train arriving in Mumbai; b= constant or predicted daily increase due to community transmission ,even if no passenger flight or trains are allowed into the city . Assume a1 and a2 are regression coefficeint for...
            Develop a simple linear regression model to predict the price of a house based upon...
            Develop a simple linear regression model to predict the price of a house based upon the living area (square feet) using a 95% level of confidence.             Write the reqression equation             Discuss the statistical significance of the model as a whole using the appropriate regression statistic at a 95% level of confidence.              Discuss the statistical significance of the coefficient for the independent variable using the appropriate regression statistic at a 95% level of confidence.             Interpret the...
1) A multiple regression model to predict nacho sales at a baseball game yields the following...
1) A multiple regression model to predict nacho sales at a baseball game yields the following coefficients: Intercept 1500 Home Team Score 80 Temp. (Degrees F) 100 Home Team Loss? -2000 Assuming that all variables in this model are significant, what would be the expected result of the home team scoring another run? A- There would be no effect B- Nacho sales would increase by 80 C- Nacho sales would decrease by 80 D- Not enough info 2) The regression...
Develop a simple linear regression model to predict a person’s income (INCOME) based on their age...
Develop a simple linear regression model to predict a person’s income (INCOME) based on their age (AGE) using a 95% level of confidence. a. Write the regression equation. Discuss the statistical significance of the model as whole using the appropriate regression statistic at a 95% level of confidence. Discuss the statistical significance of the coefficient for the independent variable using the appropriate regression statistic at a 95% level of confidence. Interpret the coefficient for the independent variable. What percentage of...
1.Develop a multiple linear regression model to predict the price of a house using the square...
1.Develop a multiple linear regression model to predict the price of a house using the square feet of living area, number of bedrooms, and number of bathrooms as the predictor variables     Write the reqression equation.      Discuss the statistical significance of the model as a whole using the appropriate regression statistic at a 95% level of confidence. Discuss the statistical significance of the coefficient for each independent variable using the appropriate regression statistics at a 95% level of confidence....
I have conducted a linear regression model to predict student scores on an exam based on...
I have conducted a linear regression model to predict student scores on an exam based on the number of hours they studied. I get a coefficient (slope) of +2.5 for the variable of hours studied. The pvalue for this coefficient is 0.45 and the 95% confidence interval is [-2.5, +7]. Which of the following conclusions CANNOT be drawn from these results? At an alpha of 0.05, we can say that the effect of hours studied on exam score is significant...
1. In the iris data, build a linear regression model to predict Sepal.Length based on both...
1. In the iris data, build a linear regression model to predict Sepal.Length based on both Petal.Length and Species. a. Calculate the regression equation, including the interaction. b. From this equation, you should be able to find 3 regression lines (one for each Species). Interpret each of the 3 slopes of the lines in the context of the problem. Remember that both numerical variables are measured in centimeters. c. Plot the 3 regression lines in a scatterplot of Sepal.Length vs....
. Develop a simple linear regression model to predict a person’s income (INCOME) based upon their...
. Develop a simple linear regression model to predict a person’s income (INCOME) based upon their years of education (EDUC) using a 95% level of confidence. a. Write the reqression equation. b. Discuss the statistical significance of the model as a whole using the appropriate regression statistic at a 95% level of confidence. c. Discuss the statistical significance of the coefficient for the independent variable using the appropriate regression statistic at a 95% level of confidence. d. Interpret the coefficient...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT