In: Statistics and Probability
| Market ID | Sales | Price | Advertising |
| 1 | 367 | 2.2 | Yes |
| 2 | 165 | 2.7 | No |
| 3 | 366 | 2.4 | Yes |
| 4 | 148 | 2.9 | No |
| 5 | 152 | 2.8 | No |
| 6 | 198 | 2.2 | No |
| 7 | 390 | 2 | Yes |
| 8 | 367 | 2.3 | Yes |
| 9 | 210 | 2.1 | No |
| 10 | 353 | 2.7 | Yes |
| 11 | 151 | 2.8 | No |
| 12 | 348 | 2.6 | Yes |
| 13 | 168 | 2.6 | No |
| 14 | 147 | 2.9 | No |
| 15 | 351 | 2.6 | Yes |
Sol:
Take the logarithms and take ln(price ) and ln (sales )in excel and drag for the entire data.


Then go to
Install analysis tool pak in excel
Go to Data >data analysis>regression
Select Y as log(sales)
X as log(Price)
Click ok

| SUMMARY OUTPUT | ||||||
| Regression Statistics | ||||||
| Multiple R | 0.56325 | |||||
| R Square | 0.317251 | |||||
| Adjusted R Square | 0.264731 | |||||
| Standard Error | 0.356917 | |||||
| Observations | 15 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 1 | 0.769517 | 0.769517 | 6.040661 | 0.028789 | |
| Residual | 13 | 1.656065 | 0.12739 | |||
| Total | 14 | 2.425582 | ||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
| Intercept | 7.242937 | 0.724449 | 9.997863 | 1.8E-07 | 5.677861 | 8.808013 |
| log(price) | -1.92493 | 0.783199 | -2.45778 | 0.028789 | -3.61693 | -0.23293 |
ln(sales) = 7.242937 -1.92493 ln(price)
There is a negative relationship as price decreases ,sales increases and vice versa.