In: Statistics and Probability
Square footage (thousands) | Price of house thousands |
2.7 | 478 |
2.3 | 328 |
2.3 | 309 |
1.8 | 298 |
1.9 | 303 |
2.1 | 466 |
1.4 | 328 |
1.6 | 385 |
2.1 | 360 |
2.9 | 374 |
2.2 | 387 |
2.6 | 452 |
2.1 | 462 |
1.8 | 436 |
1.9 | 424 |
0.95 | 308 |
1.3 | 430 |
1.9 | 449 |
2.2 | 325 |
1.2 | 358 |
1.4 | 467 |
1.8 | 489 |
1.2 | 485 |
1.1 | 450 |
1.4 | 353 |
1.8 | 358 |
2.3 | 443 |
1.7 | 422 |
1.3 | 368 |
1.5 | 416 |
data for the selling prices of homes in a ZIP code and the square footage of those homes. Use the Spearman rank correlation to determine if there is a significant correlation between the home price and the square footage.
Square footage (thousands) | Price of house thousands | Rank(X) | Rank(Y) | Difference, d | d² |
2.7 | 478 | 2 | 3 | -1 | 1 |
2.3 | 328 | 5 | 24.5 | -19.5 | 380.25 |
2.3 | 309 | 5 | 27 | -22 | 484 |
1.8 | 298 | 16.5 | 30 | -13.5 | 182.25 |
1.9 | 303 | 13 | 29 | -16 | 256 |
2.1 | 466 | 10 | 5 | 5 | 25 |
1.4 | 328 | 23 | 24.5 | -1.5 | 2.25 |
1.6 | 385 | 20 | 17 | 3 | 9 |
2.1 | 360 | 10 | 20 | -10 | 100 |
2.9 | 374 | 1 | 18 | -17 | 289 |
2.2 | 387 | 7.5 | 16 | -8.5 | 72.25 |
2.6 | 452 | 3 | 7 | -4 | 16 |
2.1 | 462 | 10 | 6 | 4 | 16 |
1.8 | 436 | 16.5 | 11 | 5.5 | 30.25 |
1.9 | 424 | 13 | 13 | 0 | 0 |
0.95 | 308 | 30 | 28 | 2 | 4 |
1.3 | 430 | 25.5 | 12 | 13.5 | 182.25 |
1.9 | 449 | 13 | 9 | 4 | 16 |
2.2 | 325 | 7.5 | 26 | -18.5 | 342.25 |
1.2 | 358 | 27.5 | 21.5 | 6 | 36 |
1.4 | 467 | 23 | 4 | 19 | 361 |
1.8 | 489 | 16.5 | 1 | 15.5 | 240.25 |
1.2 | 485 | 27.5 | 2 | 25.5 | 650.25 |
1.1 | 450 | 29 | 8 | 21 | 441 |
1.4 | 353 | 23 | 23 | 0 | 0 |
1.8 | 358 | 16.5 | 21.5 | -5 | 25 |
2.3 | 443 | 5 | 10 | -5 | 25 |
1.7 | 422 | 19 | 14 | 5 | 25 |
1.3 | 368 | 25.5 | 19 | 6.5 | 42.25 |
1.5 | 416 | 21 | 15 | 6 | 36 |
Σd² = 4289.5
n = 30
rs = 1 - 6Σd²/(n*(n²-1)) = 1 - 6*4289.5/(30*(30² -1)) = 0.0457
df = n-2 = 28
p-value = 0.8105
As p-value > 0.05, we can conclude that there is no significant correlation between the home price and the square footage.