Question

In: Advanced Math

For the following exercises, describe the end behavior of the graphs of the functions. f(x) = −5(4)x − 1

For the following exercises, describe the end behavior of the graphs of the functions.

f(x) = −5(4)x − 1

Solutions

Expert Solution

Consider the graph of the function;

f(x) = -5(4)x - 1

 

The graph of the function is shown below:

 

The end of the behavior for x:(-∞ → ∞) is explained as follows:

Here, the graph starts from -∞ and open downwards, then;

limx→-∞f(x) = -5(4)x – 1

                      = -1

 

Similarly;

limx→∞f(x) = -5(4)x – 1

                    = -∞

 

Therefore, for;

 x → ∞, f(x) = -∞ and x → -∞, f(x) = -1.


Therefore, for;

 x → ∞, f(x) = -∞ and x → -∞, f(x) = -1.

Related Solutions

For the following exercises, use the information about the graph of a polynomial ...The y-intercept is (0, −4). The x-intercepts are (−2, 0), (2, 0). Degree is 2. End behavior: as x → −∞, f(x) → ∞, as x → ∞, f(x) → ∞.
For the following exercises, use the information about the graph of a polynomial function to determine the function. Assume the leading coefficient is 1 or −1. There may be more than one correct answer.The y-intercept is (0, −4). The x-intercepts are (−2, 0), (2, 0). Degree is 2. End behavior: as x → −∞, f(x) → ∞, as x → ∞, f(x) → ∞.
For the following exercises, match each trigonometric function with one of the graphs in Figure 18. f(x) = sec x
For the following exercises, match each trigonometric function with one of the graphs in Figure 18.f(x) = sec x
For the following exercises, match each trigonometric function with one of the graphs in Figure 18. f(x) = tan x
For the following exercises, match each trigonometric function with one of the graphs in Figure 18.f(x) = tan x
For the following exercises, make tables to show the behavior of the function near the vertical asymptote and reflecting the horizontal asymptote. f(x) = 2x/(x + 4)
For the following exercises, make tables to show the behavior of the function near the vertical asymptote and reflecting the horizontal asymptote.f(x) = 2x/(x + 4)
For the following exercises, graph the functions for two periods and determine the amplitude or stretching factor, period, midline equation, and asymptotes. f(x) = 1/4 sin x
For the following exercises, graph the functions for two periods and determine the amplitude or stretching factor, period, midline equation, and asymptotes.f(x) = 1/4 sin x
For the following exercises, use the information about the graph of a polynomial .. The y-intercept is (0, 9). The x-intercepts are (−3, 0), (3, 0). Degree is 2. End behavior: as x → −∞, f(x) → −∞, as x → ∞, f(x) → −∞.
For the following exercises, use the information about the graph of a polynomial function to determine the function. Assume the leading coefficient is 1 or −1. There may be more than one correct answer.The y-intercept is (0, 9). The x-intercepts are (−3, 0), (3, 0). Degree is 2. End behavior: as x → −∞, f(x) → −∞, as x → ∞, f(x) → −∞.
if f and g are the functions whose graphs are shown, let u(x) = f(x)g(x) and v(x) = f(x)/g(x).
if f and g are the functions whose graphs are shown, let u(x) = f(x)g(x) and v(x) = f(x)/g(x) (a) Find u'(1) (b) Find v'(5).
Compute the Maclaurin series for the following functions: (a) f(x) = (2 + x)^5 (b) f(x)...
Compute the Maclaurin series for the following functions: (a) f(x) = (2 + x)^5 (b) f(x) = (x^3) * sin(x^2)
For the following exercises, determine whether or not the given function f is continuous everywhere....f(x) = 2x + 5/x
For the following exercises, determine whether or not the given function f is continuous everywhere. If it is continuous everywhere it is defined, state for what range it is continuous. If it is discontinuous, state where it is discontinuous.f(x) = 2x + 5/x
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT