Question

In: Statistics and Probability

A light fixture contains five lightbulbs. The lifetime of each bulb is exponentially distributed with mean...

A light fixture contains five lightbulbs. The lifetime of each bulb is exponentially distributed with mean 205 hours. Whenever a bulb burns out, it is replaced. Let T be the time of the first bulb replacement. Let XiXi , i = 1, . . . , 5, be the lifetimes of the five bulbs. Assume the lifetimes of the bulbs are independent.

1-Find P( X1X1  > 100).

2-Find P( X1X1 > 100 and   X2X2 > 100 and • • • and   X5X5 > 100).

Solutions

Expert Solution


Related Solutions

A light fixture contains five lightbulbs. The lifetime of each bulb is exponentially distributed with mean...
A light fixture contains five lightbulbs. The lifetime of each bulb is exponentially distributed with mean 196 hours. Whenever a bulb burns out, it is replaced. Let T be the time of the first bulb replacement. Let Xi, i = 1, . . . , 5, be the lifetimes of the five bulbs. Assume the lifetimes of the bulbs are independent. a. Find P(X1 > 100). b. Find P(X1 > 100 and X2 > 100 and • • • and...
2. The lifetime of light bulb is normally distributed with mean of 1400 hours and standard...
2. The lifetime of light bulb is normally distributed with mean of 1400 hours and standard deviation of 200 hours. a. What is the probability that a randomly chosen light bulb will last for more than 1800 hours? b. What percentage of bulbs last between 1350 and 1550 hours? c. What percentage of bulbs last less than 1.5 standard deviations below the mean lifetime or longer than 1.5 standard deviations above the mean? d. Find a value k such that...
The lifetime of a certain brand of lightbulbs is normally distributed with the mean of 3800...
The lifetime of a certain brand of lightbulbs is normally distributed with the mean of 3800 hours and standard deviation of 250 hours. The probability that randomly selected lightbulb will have lifetime more than 3500 hours is ________ The percent of lightbulbs which have the lifetime between 3500 and 4200 hours is __________ What lifetime should the manufacturer advertise for these lightbulbs if he assumes that 10% of lightbulbs with the smallest lifetimes will burn out by that time? Advertised...
The number of months that a light bulb is functioning is exponentially distributed with parameter λ...
The number of months that a light bulb is functioning is exponentially distributed with parameter λ = 1/10 . What is the probability that a light bulb will burn for at least 4 months? Find the mean and the standard deviation. What is the probability that a light bulb will burn for at least 12 months, given that it has burned for 4 months?
The lifetime of light bulb is normally distributed with mean of 1400 hours and standard deviation of 200 hours.
The lifetime of light bulb is normally distributed with mean of 1400 hours and standard deviation of 200 hours. a. What is the probability that a randomly chosen light bulb will last for more than 1800 hours? b. What percentage of bulbs last between 1350 and 1550 hours? c. What percentage of bulbs last less than 1.5 standard deviations below the mean lifetime or longer than 1.5 standard deviations above the mean? d. Find a value k such that 20% of the bulbs last...
uppose that the longevity of a light bulb is exponential with a mean lifetime of eight...
uppose that the longevity of a light bulb is exponential with a mean lifetime of eight years. (a) Find the probability that a light bulb lasts less than one year. (Round your answer to four decimal places.) (b) Find the probability that a light bulb lasts between six and ten years. (Round your answer to four decimal places.) (c) Seventy percent of all light bulbs last at least how long? (Round your answer to two decimal places.) yr (d) A...
A critical component on a submarine has an operating lifetime that is exponentially distributed with mean...
A critical component on a submarine has an operating lifetime that is exponentially distributed with mean 0.50 years. As soon as a component fails, it is replaced by a new one having statistically identical properties. What is the smallest number of spare components that the submarine should stock if it is leaving for a one-year tour and wishes the probability of having an inoperable unit caused by failures exceeding the spare inventory to be less than 0.02? Please show that...
The lifetime of a certain kind of battery is exponentially distributed, with an average lifetime of...
The lifetime of a certain kind of battery is exponentially distributed, with an average lifetime of 25 hours 4. Find the value of the 60th percentile for the lifetime of one battery. Remember units! 5. Write an interpretation (a sentence) of the 60th percentile for the lifetime of one battery. Your interpretation should include the value of the 60th percentile with correct units. 6. We are interested in the average lifetime of 16 of these batteries. Call this random variable....
Suppose hard drive A has a lifetime that is exponentially distributed with mean of 6 years...
Suppose hard drive A has a lifetime that is exponentially distributed with mean of 6 years and hard drive B has a lifetime that is exponentially distributed with a mean of 2 years. What is the probability that drive B lasts at least 3 times longer than drive A?
Suppose the life span of a light bulb is normally distributed with mean 1000 hours and...
Suppose the life span of a light bulb is normally distributed with mean 1000 hours and standard deviation 75 hours. (a) Find the 57th percentile of this distribution. (b) Find the probability that a random light bulb will last longer than 1100 hours. (c) Find the probability that the life span of a light bulb will be more than 3.14 standard deviations away from the mean. (d) Suppose you take a sample of 15 light bulbs and measure the average...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT