Question

In: Statistics and Probability

An economist wants to estimate the mean per capita income (in thousands of dollars) for a...

An economist wants to estimate the mean per capita income (in thousands of dollars) for a major city in Texas. Suppose that the mean income is found to be $36.6 for a random sample of 1012 people. Assume the population standard deviation is known to be $8.5. Construct the 80% confidence interval for the mean per capita income in thousands of dollars. Round your answers to one decimal place.

Solutions

Expert Solution

Solution :

Given that,

Point estimate = sample mean = =$36.6

Population standard deviation = = $8.5

Sample size = n = 1012

At 80% confidence level the z is ,

= 1 - 80% = 1 - 0.80 = 0.2

/ 2 = 0.2 / 2 = 0.1

Z/2 = Z0.1 = 1.282

Margin of error = E = Z/2* ( /n)

= 1.282 * (8.5 / 1012)

= 0.34

At 80% confidence interval estimate of the population mean is,

- E < < + E

36.6 - 0.3< < 36.6 + 0.3

36.3 < < 36.9

lower endpoint = 36.3

upper endpoint = 36.9

any doubts please ask ! please rate ! :)


Related Solutions

An economist wants to estimate the mean per capita income (in thousands of dollars) for a...
An economist wants to estimate the mean per capita income (in thousands of dollars) for a major city in California. Suppose that the mean income is found to be $22.6$ for a random sample of 2692 people. Assume the population standard deviation is known to be $12.4$. Construct the 98% confidence interval for the mean per capita income in thousands of dollars. Round your answers to one decimal place.
An economist wants to estimate the mean per capita income (in thousands of dollars) for a...
An economist wants to estimate the mean per capita income (in thousands of dollars) for a major city in California. Suppose that the mean income is found to be $⁢22.4 for a random sample of 2128 people. Assume the population standard deviation is known to be $⁢9.3. Construct the 98% confidence interval for the mean per capita income in thousands of dollars. Round your answers to one decimal place.
An economist wants to estimate the mean per capita income (in thousands of dollars) for a...
An economist wants to estimate the mean per capita income (in thousands of dollars) for a major city in California. Suppose that the mean income is found to be $23.6$⁢23.6 for a random sample of 12341234 people. Assume the population standard deviation is known to be $11.4$⁢11.4. Construct the 90%90% confidence interval for the mean per capita income in thousands of dollars. Round your answers to one decimal place.
An economist wants to estimate the mean per capita income (in thousands of dollars) for a...
An economist wants to estimate the mean per capita income (in thousands of dollars) for a major city in California. Suppose that the mean income is found to be $23.1 for a random sample of 3231 people. Assume the population standard deviation is known to be $11.8. Construct the 95% confidence interval for the mean per capita income in thousands of dollars. Round your answers to one decimal place.
An economist wants to estimate the mean per capita income (in thousands of dollars). Suppose that...
An economist wants to estimate the mean per capita income (in thousands of dollars). Suppose that the mean income is found to be $23.4 $23.4 for a random sample of 976 976 people. Assume the population standard deviation is known to be $10 $10. Construct the 95% 95% confidence interval for the mean per capita income in thousands of dollars. Round your answers to one decimal place.
Let x be per capita income in thousands of dollars. Let y be the number of...
Let x be per capita income in thousands of dollars. Let y be the number of medical doctors per 10,000 residents. Six small cities in Oregon gave the following information about x and y. x 8.6 9.7 10.3 8.0 8.3 8.7 y 9.7 19.0 22.0 10.2 11.4 13.1 Complete parts (a) through (e), given Σx = 53.6, Σy = 85.4, Σx2 = 482.72, Σy2 = 1344.7, Σxy = 784.51, and r ≈ 0.963. (b) Verify the given sums Σx, Σy,...
Let x be per capita income in thousands of dollars. Let y be the number of...
Let x be per capita income in thousands of dollars. Let y be the number of medical doctors per 10,000 residents. Six small cities in Oregon gave the following information about x and y. x 9.0 9.4 10.2 8.0 8.3 8.7 y 9.5 18.0 21.2 10.2 11.4 13.1 Complete parts (a) through (e), given Σx = 53.6, Σy = 83.4, Σx2 = 481.98, Σy2 = 1269.3, Σxy = 761.13, and r ≈ 0.864. (b) Verify the given sums Σx, Σy,...
Let x be per capita income in thousands of dollars. Let y be the number of...
Let x be per capita income in thousands of dollars. Let y be the number of medical doctors per 10,000 residents. Six small cities in Oregon gave the following information about x and y. x 8.4 9.1 9.8 8.0 8.3 8.7 y 9.8 18.4 21.2 10.2 11.4 13.1 Complete parts (a) through (e), given Σx = 52.3, Σy = 84.1, Σx2 = 457.99, Σy2 = 1289.65, Σxy = 747.71, and r ≈ 0.958. (a) Draw a scatter diagram displaying the...
Let x be per capita income in thousands of dollars. Let y be the number of...
Let x be per capita income in thousands of dollars. Let y be the number of medical doctors per 10,000 residents. Six small cities in Oregon gave the following information about x and y. x 8.3 9.3 10.2 8.0 8.3 8.7 y 9.9 18.1 20.6 10.2 11.4 13.1 Complete parts (a) through (e), given Σx = 52.8, Σy = 83.3, Σx2 = 468, Σy2 = 1255.59, Σxy = 750.81, and r ≈ 0.974. (a) Draw a scatter diagram displaying the...
We have 2008 data on y = income per capita (in thousands of dollars) and x...
We have 2008 data on y = income per capita (in thousands of dollars) and x = percentage of the population with a bachelor’s degree or more for the 50 U.S. states plus the District of Columbia, a total of N = 51 observations. We have results from a simple linear regression of y on x. a. The estimated error variance is ?̂ 2 = 14.24. What is the sum of squared least squares residuals? b. The estimated variance of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT