In: Statistics and Probability
DVD Sales | Box Office |
238.51 | 35 |
311.1 | 45.67 |
409.89 | 51.18 |
529.47 | 61.25 |
604.3 | 75.67 |
449.88 | 60.23 |
280.92 | 44.55 |
204.8 | 31.69 |
435.56 | 51.74 |
704.54 | 84.77 |
455.99 | 52.42 |
487.38 | 55.34 |
597.72 | 69.99 |
314.87 | 46.43 |
430.36 | 58.59 |
563.61 | 70.22 |
530.07 | 59.89 |
511.79 | 62.66 |
573.75 | 65.35 |
600.5 | 67.55 |
560.07 | 67.91 |
567.27 | 68.25 |
671.77 | 73.13 |
716.74 | 77.62 |
765.91 | 87.09 |
826.93 | 90.73 |
905.94 | 95.55 |
859.71 | 96.62 |
939.71 | 104.7 |
980.9 | 108.51 |
using minitab>stat>Regression
we have
Regression Analysis: DVD Sales versus Box Office
Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Regression 1 1192322 1192322 1102.58 0.00
Error 28 30279 1081
Total 29 1222601
Model Summary
S R-sq R-sq(adj) R-sq(pred)
32.8845 97.52% 97.43% 97.22%
Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant -131.3 21.9 -6.00 0.000
Box Office 10.378 0.313 33.21 0.000 1.00
Regression Equation
DVD Sales = -131.3 + 10.378 Box Office
Regression Equation
DVD Sales = -131.3 + 10.378 Box Office
approximately all the residuals lies on the so we can say that the residuals follow normality