In: Statistics and Probability
A study looked at number of cavity children per 100 in 18 North American cites before and after public water fluoridation projects. The following table lists the data.
City |
Before |
After |
1 |
49.2 |
18.2 |
2 |
30 |
21.9 |
3 |
16 |
5.2 |
4 |
47.8 |
20.4 |
5 |
3.4 |
2.8 |
6 |
16.8 |
21 |
7 |
10.7 |
11.3 |
8 |
5.7 |
6.1 |
9 |
23 |
25 |
10 |
17 |
13 |
11 |
79 |
76 |
12 |
66 |
59 |
13 |
46.8 |
25.6 |
14 |
84.9 |
50.4 |
15 |
65.2 |
41.2 |
16 |
52 |
21 |
17 |
50 |
32 |
18 |
12 |
20 |
a. Please test whether there is a significant change in number of cavity children per 100 after and before public water fluoridation. Make sure you include all the five steps in the hypothesis testing questions.
b. What is the 95% confidence interval for the change?
Number | Before | After | Difference | ( di - d̅ )2 |
49.2 | 18.2 | 31 | 383.724568 | |
30 | 21.9 | 8.1 | 10.9634568 | |
16 | 5.2 | 10.8 | 0.37345679 | |
47.8 | 20.4 | 27.4 | 255.644568 | |
3.4 | 2.8 | 0.6 | 116.880123 | |
16.8 | 21 | -4.2 | 243.70679 | |
10.7 | 11.3 | -0.6 | 144.26679 | |
5.7 | 6.1 | -0.4 | 139.502346 | |
23 | 25 | -2 | 179.857901 | |
17 | 13 | 4 | 54.9245679 | |
79 | 76 | 3 | 70.7467901 | |
66 | 59 | 7 | 19.4579012 | |
46.8 | 25.6 | 21.2 | 95.8223457 | |
84.9 | 50.4 | 34.5 | 533.09679 | |
65.2 | 41.2 | 24 | 158.480123 | |
52 | 21 | 31 | 383.724568 | |
50 | 32 | 18 | 43.4134568 | |
12 | 20 | -8 | 376.791235 | |
Total | 675.5 | 470.1 | 205.4 | 3211.37778 |
Part a)
To Test ;-
H0 :-
H1 :-
Test Statistic :-
S(d) = √(Σ (di - d̅)2 / n-1)
S(d) = √( 3211.37778 / 17) = 13.7443
d̅ = Σdi/n = 205.4 / 18 = 11.41111
t = d̅ / ( S(d) / √(n) )
t = 11.4111 / ( 13.7443 / √(18) )
t = 3.5224
Test Criteria :-
Reject null hypothesis if | t | > t(α/2)
Critical value t(α/2) = t( 0.05 /2 ) = 2.10982
| t | > t(α/2) = 3.52243 > 2.10982
Result :- Reject null hypothesis
There is a significant change in number of cavity children per 100 after and before public water fluoridation.
Part b)
Confidence Interval :-
d̅ ± t(α/2, n-1) Sd / √(n)
t(α/2) = t(0.05 /2) = 2.10982
11.4111 ± t(0.05/2) * 13.7443/√(18)
Lower Limit = 11.4111 - t(0.05/2) 13.7443/√(18)
Lower Limit = 4.57632
Upper Limit = 11.4111 + t(0.05/2}) 13.7443/√(18)
Upper Limit = 18.24591
95% Confidence interval is ( 4.5763 , 18.24591
)
SInce the value 0 does not lie in the interval ( 4.5763 , 18.24591 ), hence we reject null hypothesis.