Question

In: Statistics and Probability

These data are observations collected using a completely randomized design. Sample 1     Sample 2     Sample 3...

These data are observations collected using a completely randomized design.

Sample 1     Sample 2     Sample 3
4 4 2
2 3 0
4 5 2
3 2 1
2 6

(a) Calculate CM and Total SS. (Round your answer for CM to six decimal places and your Total SS to four decimal places.

(b) Calculate SST and MST. (Round your answers to four decimal places.)

(c) Calculate SSE and MSE. (Round your answers to four decimal places.)

(d) Construct an ANOVA table for the data. (Round your answer for F to two decimal places. Round your answers for SS and MS to four decimal places.)

Source df SS MS F
Treatments    
Error    
Total

Solutions

Expert Solution


Related Solutions

The following data are from a completely randomized design.
You may need to use the appropriate technology to answer this question. The following data are from a completely randomized design. Treatment A B C 162 142 126 142 157 123 166 123 138 144 142 140 148 137 150 168 157 127 Sample mean 155 143 134 Sample variance 135.6 166.0 108.4 (a) Compute the sum of squares between treatments. (b) Compute the mean square between treatments. (c) Compute the sum of squares due to error. (d) Compute the...
True or False 1. In a completely randomized experimental design with 10 treatments, if the sample...
True or False 1. In a completely randomized experimental design with 10 treatments, if the sample size (n) is 40 and α = 0.05, then tukey’s critical value is qα = 4.82. 2. The Chi-Square distribution is a right-skewed distribution that is dependent on two degrees of freedom (the numerator df and the denominator df).
The following data are from a completely randomized design. Treatment Observation A B C 1 162...
The following data are from a completely randomized design. Treatment Observation A B C 1 162 142 126 2 142 156 122 3 165 124 138 4 145 142 140 5 148 136 150 6 174 152 128 Sample Mean 156 142 134 Sample Variance 164.4 131.2 110.4 Compute the sum of squares between treatments. Compute the mean square between treatment Compute the sum of squares due to error. Compute the mean square due to error. Set up the ANOVA...
The following data are from a completely randomized design. In the following calculations, use α =...
The following data are from a completely randomized design. In the following calculations, use α = 0.05 (level of significance) Treatment 1 Treatment 2 Treatment 3 63 82 69 47 72 54 54 88 61 40 66 48 sample mean 51 77 58 sample variance 96.67 97.34 81.99 a. Use analysis of variance to test for a significant difference among the means of the three treatments. b. Use Fisher’s LSD procedure to determine which means are different.
The following data are from a completely randomized design. In the following calculations, use α =...
The following data are from a completely randomized design. In the following calculations, use α = 0.05. Treatment 1 Treatment 2 Treatment 3 64 81 68 48 71 55 53 88 60 43 64 49 xj 52 76 58 sj2 80.67 112.67 64.67 (a)Use analysis of variance to test for a significant difference among the means of the three treatments. State the null and alternative hypotheses. H0: At least two of the population means are equal. Ha: At least two...
The following data are from a completely randomized design. In the following calculations, use α =...
The following data are from a completely randomized design. In the following calculations, use α = 0.05. Treatment 1 Treatment 2 Treatment 3 62 83 68 46 71 55 53 88 62 39 70 47 xj 50 78 58 sj2 96.67 79.33 82.00 (a) Use analysis of variance to test for a significant difference among the means of the three treatments. State the null and alternative hypotheses. H0: At least two of the population means are equal. Ha: At least...
The following data are from a completely randomized design. In the following calculations, use α =...
The following data are from a completely randomized design. In the following calculations, use α = 0.05. Treatment 1 Treatment 2 Treatment 3 64 82 69 48 73 53 55 89 61 37 68 45 xj 51 78 57 sj2 130.00 87.33 106.67 Find the value of the test statistic. (Round your answer to two decimal places.)___ Find the p-value. (Round your answer to three decimal places.) p-value = ____ +Use Fisher's LSD procedure to determine which means are different....
The following data are from a completely randomized design. In the following calculations, use α =...
The following data are from a completely randomized design. In the following calculations, use α = 0.05. Treatment 1 Treatment 2 Treatment 3 63 82 69 46 72 54 53 87 62 46 63 47 xj 52 76 58 sj2 64.67 114.00 91.33 (a) Use analysis of variance to test for a significant difference among the means of the three treatments. State the null and alternative hypotheses. H0: μ1 = μ2 = μ3 Ha: Not all the population means are...
The following data are from a completely randomized design. In the following calculations, use α =...
The following data are from a completely randomized design. In the following calculations, use α = 0.05. Treatment 1 Treatment 2 Treatment 3 62 82 69 46 73 53 53 89 61 39 60 45 xj 50 76 57 sj2 96.67 156.67 106.67 (a) Use analysis of variance to test for a significant difference among the means of the three treatments. State the null and alternative hypotheses. H0: μ1 ≠ μ2 ≠ μ3 Ha: μ1 = μ2 = μ3 H0:...
The following data are from a completely randomized design. In the following calculations, use α =...
The following data are from a completely randomized design. In the following calculations, use α = 0.05. Treatment 1 Treatment 2 Treatment 3 64 81 68 48 73 53 53 89 60 43 69 55 xj 52 78 59 sj2 80.67 78.67 44.67 (a) Use analysis of variance to test for a significant difference among the means of the three treatments. State the null and alternative hypotheses. H0: μ1 ≠ μ2 ≠ μ3 Ha: μ1 = μ2 = μ3 H0:...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT