Question

In: Computer Science

Give the entire code for Minimum spanning tree using Boruvka's algorithm in java (not copy-pasted from...

Give the entire code for Minimum spanning tree using Boruvka's algorithm in java (not copy-pasted from any other website)

Solutions

Expert Solution

package com.sanfoundry.graph;
 
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.Scanner;
 
public class BoruvkasMST
{
    private Bag<Edge> mst = new Bag<Edge>();    // Edge in MST
    private double weight;                      // weight of MST
 
    public BoruvkasMST(EdgeWeightedGraph G)
    {
        UF uf = new UF(G.V());
        // repeat at most log V times or until we have V-1 Edge
        for (int t = 1; t < G.V() && mst.size() < G.V() - 1; t = t + t)
        {
            // foreach tree in forest, find closest edge
            // if edge weights are equal, ties are broken in favor of first edge
            // in G.Edge()
            Edge[] closest = new Edge[G.V()];
            for (Edge e : G.Edge())
            {
                int v = e.either(), w = e.other(v);
                int i = uf.find(v), j = uf.find(w);
                if (i == j)
                    continue;   // same tree
                if (closest[i] == null || less(e, closest[i]))
                    closest[i] = e;
                if (closest[j] == null || less(e, closest[j]))
                    closest[j] = e;
            }
            // add newly discovered Edge to MST
            for (int i = 0; i < G.V(); i++)
            {
                Edge e = closest[i];
                if (e != null)
                {
                    int v = e.either(), w = e.other(v);
                    // don't add the same edge twice
                    if (!uf.connected(v, w))
                    {
                        mst.add(e);
                        weight += e.weight();
                        uf.union(v, w);
                    }
                }
            }
        }
        // check optimality conditions
        assert check(G);
    }
 
    public Iterable<Edge> Edge()
    {
        return mst;
    }
 
    public double weight()
    {
        return weight;
    }
 
    // is the weight of edge e strictly less than that of edge f?
    private static boolean less(Edge e, Edge f)
    {
        return e.weight() < f.weight();
    }
 
    // check optimality conditions (takes time proportional to E V lg* V)
    private boolean check(EdgeWeightedGraph G)
    {
        // check weight
        double totalWeight = 0.0;
        for (Edge e : Edge())
        {
            totalWeight += e.weight();
        }
        double EPSILON = 1E-12;
        if (Math.abs(totalWeight - weight()) > EPSILON)
        {
            System.err.printf(
                    "Weight of Edge does not equal weight(): %f vs. %f\n",
                    totalWeight, weight());
            return false;
        }
        // check that it is acyclic
        UF uf = new UF(G.V());
        for (Edge e : Edge())
        {
            int v = e.either(), w = e.other(v);
            if (uf.connected(v, w))
            {
                System.err.println("Not a forest");
                return false;
            }
            uf.union(v, w);
        }
        // check that it is a spanning forest
        for (Edge e : G.Edge())
        {
            int v = e.either(), w = e.other(v);
            if (!uf.connected(v, w))
            {
                System.err.println("Not a spanning forest");
                return false;
            }
        }
        // check that it is a minimal spanning forest (cut optimality
        // conditions)
        for (Edge e : Edge())
        {
            // all Edge in MST except e
            uf = new UF(G.V());
            for (Edge f : mst)
            {
                int x = f.either(), y = f.other(x);
                if (f != e)
                    uf.union(x, y);
            }
            // check that e is min weight edge in crossing cut
            for (Edge f : G.Edge())
            {
                int x = f.either(), y = f.other(x);
                if (!uf.connected(x, y))
                {
                    if (f.weight() < e.weight())
                    {
                        System.err.println("Edge " + f
                                + " violates cut optimality conditions");
                        return false;
                    }
                }
            }
        }
        return true;
    }
 
    public static void main(String[] args)
    {
        Scanner sc = new Scanner(System.in);
        System.out.println("Enter the number of verties: ");
        EdgeWeightedGraph G = new EdgeWeightedGraph(sc.nextInt());
        BoruvkasMST mst = new BoruvkasMST(G);
        System.out.println("MST: ");
        for (Edge e : mst.Edge())
        {
            System.out.println(e);
        }
        System.out.printf("Total weight of MST: %.5f\n", mst.weight());
        sc.close();
    }
}
 
class BagOfItems<Item> implements Iterable<Item>
{
    private int N;               // number of elements in bag
    private Node<Item> first;    // beginning of bag
 
    // helper linked list class
    private static class Node<Item>
    {
        private Item item;
        private Node<Item> next;
    }
 
    public BagOfItems()
    {
        first = null;
        N = 0;
    }
 
    public boolean isEmpty()
    {
        return first == null;
    }
 
    public int size()
    {
        return N;
    }
 
    public void add(Item item)
    {
        Node<Item> oldfirst = first;
        first = new Node<Item>();
        first.item = item;
        first.next = oldfirst;
        N++;
    }
 
    public Iterator<Item> iterator()
    {
        return new ListIterator<Item>(first);
    }
 
    // an iterator, doesn't implement remove() since it's optional
    @SuppressWarnings("hiding")
    private class ListIterator<Item> implements Iterator<Item>
    {
        private Node<Item> current;
 
        public ListIterator(Node<Item> first)
        {
            current = first;
        }
 
        public boolean hasNext()
        {
            return current != null;
        }
 
        public void remove()
        {
            throw new UnsupportedOperationException();
        }
 
        public Item next()
        {
            if (!hasNext())
                throw new NoSuchElementException();
            Item item = current.item;
            current = current.next;
            return item;
        }
    }
}
 
class EdgeWeightedGraph
{
    private final int V;
    private final int E;
    private Bag<Edge>[] adj;
 
    @SuppressWarnings("unchecked")
    public EdgeWeightedGraph(int V)
    {
        Scanner sc = new Scanner(System.in);
        if (V < 0)
        {
            sc.close();
            throw new IllegalArgumentException(
                    "Number of vertices must be nonnegative");
        }
        this.V = V;
        adj = (Bag<Edge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
        {
            adj[v] = new Bag<Edge>();
        }
        System.out.println("Enter the number of Edge: ");
        E = sc.nextInt();
        if (E < 0)
        {
            sc.close();
            throw new IllegalArgumentException(
                    "Number of Edge must be nonnegative");
        }
        System.out.println("Enter the Edge: <from> <to>");
        for (int i = 0; i < E; i++)
        {
            int v = sc.nextInt();
            int w = sc.nextInt();
            double weight = Math.round(100 * Math.random()) / 100.0;
            System.out.println(weight);
            Edge e = new Edge(v, w, weight);
            addEdge(e);
        }
        sc.close();
    }
 
    public int V()
    {
        return V;
    }
 
    public int E()
    {
        return E;
    }
 
    public void addEdge(Edge e)
    {
        int v = e.either();
        int w = e.other(v);
        if (v < 0 || v >= V)
            throw new IndexOutOfBoundsException("vertex " + v
                    + " is not between 0 and " + (V - 1));
        if (w < 0 || w >= V)
            throw new IndexOutOfBoundsException("vertex " + w
                    + " is not between 0 and " + (V - 1));
        adj[v].add(e);
        adj[w].add(e);
    }
 
    public Iterable<Edge> adj(int v)
    {
        if (v < 0 || v >= V)
            throw new IndexOutOfBoundsException("vertex " + v
                    + " is not between 0 and " + (V - 1));
        return adj[v];
    }
 
    public Iterable<Edge> Edge()
    {
        Bag<Edge> list = new Bag<Edge>();
        for (int v = 0; v < V; v++)
        {
            int selfLoops = 0;
            for (Edge e : adj(v))
            {
                if (e.other(v) > v)
                {
                    list.add(e);
                }
                // only add one copy of each self loop (self loops will be
                // consecutive)
                else if (e.other(v) == v)
                {
                    if (selfLoops % 2 == 0)
                        list.add(e);
                    selfLoops++;
                }
            }
        }
        return list;
    }
 
    public String toString()
    {
        String NEWLINE = System.getProperty("line.separator");
        StringBuilder s = new StringBuilder();
        s.append(V + " " + E + NEWLINE);
        for (int v = 0; v < V; v++)
        {
            s.append(v + ": ");
            for (Edge e : adj[v])
            {
                s.append(e + "  ");
            }
            s.append(NEWLINE);
        }
        return s.toString();
    }
}
 
class Edge implements Comparable<Edge>
{
    private final int v;
    private final int w;
    private final double weight;
 
    public Edge(int v, int w, double weight)
    {
        if (v < 0)
            throw new IndexOutOfBoundsException(
                    "Vertex name must be a nonnegative integer");
        if (w < 0)
            throw new IndexOutOfBoundsException(
                    "Vertex name must be a nonnegative integer");
        if (Double.isNaN(weight))
            throw new IllegalArgumentException("Weight is NaN");
        this.v = v;
        this.w = w;
        this.weight = weight;
    }
 
    public double weight()
    {
        return weight;
    }
 
    public int either()
    {
        return v;
    }
 
    public int other(int vertex)
    {
        if (vertex == v)
            return w;
        else if (vertex == w)
            return v;
        else
            throw new IllegalArgumentException("Illegal endpoint");
    }
 
    public int compareTo(Edge that)
    {
        if (this.weight() < that.weight())
            return -1;
        else if (this.weight() > that.weight())
            return +1;
        else
            return 0;
    }
 
    public String toString()
    {
        return String.format("%d-%d %.5f", v, w, weight);
    }
}
 
class UF
{
    private int[] id;     // id[i] = parent of i
    private byte[] rank;  // rank[i] = rank of subtree rooted at i (cannot be
                         // more than 31)
    private int count;    // number of components
 
    public UF(int N)
    {
        if (N < 0)
            throw new IllegalArgumentException();
        count = N;
        id = new int[N];
        rank = new byte[N];
        for (int i = 0; i < N; i++)
        {
            id[i] = i;
            rank[i] = 0;
        }
    }
 
    public int find(int p)
    {
        if (p < 0 || p >= id.length)
            throw new IndexOutOfBoundsException();
        while (p != id[p])
        {
            id[p] = id[id[p]];    // path compression by halving
            p = id[p];
        }
        return p;
    }
 
    public int count()
    {
        return count;
    }
 
    public boolean connected(int p, int q)
    {
        return find(p) == find(q);
    }
 
    public void union(int p, int q)
    {
        int i = find(p);
        int j = find(q);
        if (i == j)
            return;
        // make root of smaller rank point to root of larger rank
        if (rank[i] < rank[j])
            id[i] = j;
        else if (rank[i] > rank[j])
            id[j] = i;
        else
        {
            id[j] = i;
            rank[i]++;
        }
        count--;
    }
}

Related Solutions

Java programming Trace the algorithm for minimum spanning tree (eager, lazy Prim algorithm)
Java programming Trace the algorithm for minimum spanning tree (eager, lazy Prim algorithm)
Prove that Kruskal’s algorithm finds a minimum weight spanning tree.
Prove that Kruskal’s algorithm finds a minimum weight spanning tree.
AVL tree; Insert and Range Minimum operation in Java code.
AVL tree; Insert and Range Minimum operation in Java code.
minimum spanning tree: find a connected subgraph whose total edge cost is minimized (python code)
minimum spanning tree: find a connected subgraph whose total edge cost is minimized (python code)
Suppose T is a minimal spanning tree found by Prim’s algorithm in a connected graph G....
Suppose T is a minimal spanning tree found by Prim’s algorithm in a connected graph G. (i) Show that either T contains the n-1 smallest edges, or the n-1 smallest edges form a subgraph which contains a cycle. (ii) Show that if an edge (a, b) is not in T and if P is the unique path in T from a to b, then for each edge e in P the weight of e is less than the weight of...
One of the basic motivations behind the Minimum Spanning Tree Problem is the goal of designing...
One of the basic motivations behind the Minimum Spanning Tree Problem is the goal of designing a spanning network for a set of nodes with minimum total cost. Here we explore another type of objective: designing a spanning network for which the most expensive edge is as cheap as possible. Specifically, let G = (V, E) be a connected graph with n vertices, m edges, and positive edges costs that are all distinct. Let T = (V, E0 ) be...
Develop an algorithm for INSERTION SORT. Give the pseudo-code version. Convert your pseudo-code into a Java...
Develop an algorithm for INSERTION SORT. Give the pseudo-code version. Convert your pseudo-code into a Java program.
Assignment Content Resource: ****************************CODE PASTED BELOW******************************* For this assignment, you will develop Java™ code that relies...
Assignment Content Resource: ****************************CODE PASTED BELOW******************************* For this assignment, you will develop Java™ code that relies on localization to format currencies and dates. In NetBeans, copy the linked code to a file named "Startercode.java". Read through the code carefully and replace all occurrences of "___?___" with Java™ code. Note: Refer to "Working with Dates and Times" in Ch. 5, "Dates, Strings, and Localization," in OCP: Oracle® Certified Professional Java® SE 8 Programmer II Study Guide for help. Run and debug...
using java Which sorting algorithm is this, justify in detail your answer? image of code in...
using java Which sorting algorithm is this, justify in detail your answer? image of code in this link https://lh3.googleusercontent.com/ie0xsSduZTDJ0PYd3skj43dNApdae1rKAXt1OIdkUE9WAyIrrzLndH2pbsVs_laCJ91H61wxBRopgHPcF8PayLjWHiW-Pn72ti02xxb0aNpx87tFUbT7j8lW0bL4=w655
Write a simple Java code to make a Binary Tree for the following tree: Don’t use...
Write a simple Java code to make a Binary Tree for the following tree: Don’t use serializable interface implantation /** Class to encapsulate a tree node. */ protected static class Node implements Serializable {
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT