Question

In: Advanced Math

Given y 1 ( t ) = t2 and y2 ( t ) = t ^−...

Given y 1 ( t ) = t2 and y2 ( t ) = t ^− 1 satisfy the corresponding homogeneous equation of

t^2 y ' ' − 2 y = − 3 − t , t > 0

Then the general solution to the non-homogeneous equation can be written as y ( t ) = c1y1(t)+c2y2(t)+yp(t)

Use variation of parameters to find y p ( t ) .

Solutions

Expert Solution

Using variation of parameter we find the solution of the given differential equation.


Related Solutions

y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0)...
y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0) = 1, solution: y(t) = et2+2t y′ = 5t4y, y(0) = 1, solution: y(t) = et5 y′ = t3/y2, y(0) = 1, solution: y(t) = (3t4/4 + 1)1/3 For the IVPs above, make a log-log plot of the error of Backward Euler and Implicit Trapezoidal Method, at t = 1 as a function of hwithh=0.1×2−k for0≤k≤5.
y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0)...
y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0) = 1, solution: y(t) = et2+2t y′ = 5t4y, y(0) = 1, solution: y(t) = et5 y′ = t3/y2, y(0) = 1, solution: y(t) = (3t4/4 + 1)1/3 For the IVPs above, make a log-log plot of the error of Explicit Trapezoidal Rule at t = 1 as a function ofhwithh=0.1×2−k for0≤k≤5.
Consider the IVP t2y''−(t2 + 2)y' + (t + 2)y = t3 with y(1) = 0...
Consider the IVP t2y''−(t2 + 2)y' + (t + 2)y = t3 with y(1) = 0 and y'(1) = 0. • One function in the fundamental set of solutions is y1(t) = t. Find the second function y2(t) by setting y2(t) = w(t)y1(t) for w(t) to be determined. • Find the solution of the IVP
Consider the IVP t2y''−(t2 + 2)y' + (t + 2)y = t3 with y(1) = 0...
Consider the IVP t2y''−(t2 + 2)y' + (t + 2)y = t3 with y(1) = 0 and y'(1) = 0. • One function in the fundamental set of solutions is y1(t) = t. Find the second function y2(t) by setting y2(t) = w(t)y1(t) for w(t) to be determined. • Find the solution of the IVP
Consider the equation t^2 -y"-t(t+2)y'+(t+2)y=2t^3, (t>0). Given that y1(t)=t3, y2(t)=te^t are the two fundamental solutions of...
Consider the equation t^2 -y"-t(t+2)y'+(t+2)y=2t^3, (t>0). Given that y1(t)=t3, y2(t)=te^t are the two fundamental solutions of the corresponding homogeneous equation, find the general solution of the nonhomogeneous equation.
Given the set A = {(x, y) ∈ R2 | x2 + y2 < 1 and...
Given the set A = {(x, y) ∈ R2 | x2 + y2 < 1 and y ≥ 0}. Draw sketches of cl A, int A, ∂A, (cl(Ac))c, the limit points of A, and the isolated points of A. Try to be clear about what the sketch is describing. (The answer does not depend on whether one uses the Euclidean distance or the taxi distance on R2.)
Two spacecraft are following paths in space given by r1=〈sin(t),t,t2〉r1=〈sin⁡(t),t,t2〉 and r2=〈cos(t),1−t,t3〉.r2=〈cos⁡(t),1−t,t3〉. If the temperature for...
Two spacecraft are following paths in space given by r1=〈sin(t),t,t2〉r1=〈sin⁡(t),t,t2〉 and r2=〈cos(t),1−t,t3〉.r2=〈cos⁡(t),1−t,t3〉. If the temperature for the points is given by T(x,y,z)=x2y(6−z),T(x,y,z)=x2y(6−z), use the Chain Rule to determine the rate of change of the difference DD in the temperatures the two spacecraft experience at time t=2.t=2. (Use decimal notation. Give your answer to two decimal places.) dDdt=dDdt=
Consider the parametric equations x = (t2 − 5) /(t2 + 1) , y = (t3 − 7t + 1) / (t2 + 1)
IN MATLABConsider the parametric equations x = (t2 − 5) /(t2 + 1) , y = (t3 − 7t + 1) / (t2 + 1)(a) Plot the curve for −8 ≤ t ≤ 8.(b) Determine the points on the graph where the slope of the tangent line is 2.(c) Determine the points on the graph where the graph has a horizontal tangent.
The joint density of Y1, Y2 is given by f(y) = k, −1 ≤ y1 ≤...
The joint density of Y1, Y2 is given by f(y) = k, −1 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, y1 + y2 ≤ 1, y1 − y2 ≥ −1, 0, otherwise a. Find the value of k that makes this a probability density function. b. Find the probabilities P(Y2 ≤ 1/2) and P(Y1 ≥ −1/2, Y2 ≤ 1/2 c. Find the marginal distributions of Y1 and of Y2. d. Determine if Y1 and Y2 are independent e....
Considerthecurvex(t)=t2,y(t)=t3 −3t,for−∞<t<∞. 2 (a) Find all t that give x intercepts and y-intercepts, and plot them....
Considerthecurvex(t)=t2,y(t)=t3 −3t,for−∞<t<∞. 2 (a) Find all t that give x intercepts and y-intercepts, and plot them. (b) Find all t which give horizontal or vertical tangents, and plot the corresponding points, with a short horizontal or vertical segment to indicate the tangent line. (c) Find the values of t for which x(t) is increasing and those for which it is decreasing. Do the same for y. (d) Determine what happens to x(t) and y(t) as t → ∞. (e) Make...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT