Question

In: Advanced Math

Given y 1 ( t ) = t2 and y2 ( t ) = t ^−...

Given y 1 ( t ) = t2 and y2 ( t ) = t ^− 1 satisfy the corresponding homogeneous equation of

t^2 y ' ' − 2 y = − 3 − t , t > 0

Then the general solution to the non-homogeneous equation can be written as y ( t ) = c1y1(t)+c2y2(t)+yp(t)

Use variation of parameters to find y p ( t ) .

Solutions

Expert Solution

Using variation of parameter we find the solution of the given differential equation.


Related Solutions

y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0)...
y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0) = 1, solution: y(t) = et2+2t y′ = 5t4y, y(0) = 1, solution: y(t) = et5 y′ = t3/y2, y(0) = 1, solution: y(t) = (3t4/4 + 1)1/3 For the IVPs above, make a log-log plot of the error of Backward Euler and Implicit Trapezoidal Method, at t = 1 as a function of hwithh=0.1×2−k for0≤k≤5.
y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0)...
y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0) = 1, solution: y(t) = et2+2t y′ = 5t4y, y(0) = 1, solution: y(t) = et5 y′ = t3/y2, y(0) = 1, solution: y(t) = (3t4/4 + 1)1/3 For the IVPs above, make a log-log plot of the error of Explicit Trapezoidal Rule at t = 1 as a function ofhwithh=0.1×2−k for0≤k≤5.
Consider the IVP t2y''−(t2 + 2)y' + (t + 2)y = t3 with y(1) = 0...
Consider the IVP t2y''−(t2 + 2)y' + (t + 2)y = t3 with y(1) = 0 and y'(1) = 0. • One function in the fundamental set of solutions is y1(t) = t. Find the second function y2(t) by setting y2(t) = w(t)y1(t) for w(t) to be determined. • Find the solution of the IVP
Consider the IVP t2y''−(t2 + 2)y' + (t + 2)y = t3 with y(1) = 0...
Consider the IVP t2y''−(t2 + 2)y' + (t + 2)y = t3 with y(1) = 0 and y'(1) = 0. • One function in the fundamental set of solutions is y1(t) = t. Find the second function y2(t) by setting y2(t) = w(t)y1(t) for w(t) to be determined. • Find the solution of the IVP
Consider the equation t^2 -y"-t(t+2)y'+(t+2)y=2t^3, (t>0). Given that y1(t)=t3, y2(t)=te^t are the two fundamental solutions of...
Consider the equation t^2 -y"-t(t+2)y'+(t+2)y=2t^3, (t>0). Given that y1(t)=t3, y2(t)=te^t are the two fundamental solutions of the corresponding homogeneous equation, find the general solution of the nonhomogeneous equation.
Two spacecraft are following paths in space given by r1=〈sin(t),t,t2〉r1=〈sin⁡(t),t,t2〉 and r2=〈cos(t),1−t,t3〉.r2=〈cos⁡(t),1−t,t3〉. If the temperature for...
Two spacecraft are following paths in space given by r1=〈sin(t),t,t2〉r1=〈sin⁡(t),t,t2〉 and r2=〈cos(t),1−t,t3〉.r2=〈cos⁡(t),1−t,t3〉. If the temperature for the points is given by T(x,y,z)=x2y(6−z),T(x,y,z)=x2y(6−z), use the Chain Rule to determine the rate of change of the difference DD in the temperatures the two spacecraft experience at time t=2.t=2. (Use decimal notation. Give your answer to two decimal places.) dDdt=dDdt=
Consider the parametric equations x = (t2 − 5) /(t2 + 1) , y = (t3 − 7t + 1) / (t2 + 1)
IN MATLABConsider the parametric equations x = (t2 − 5) /(t2 + 1) , y = (t3 − 7t + 1) / (t2 + 1)(a) Plot the curve for −8 ≤ t ≤ 8.(b) Determine the points on the graph where the slope of the tangent line is 2.(c) Determine the points on the graph where the graph has a horizontal tangent.
The joint density of Y1, Y2 is given by f(y) = k, −1 ≤ y1 ≤...
The joint density of Y1, Y2 is given by f(y) = k, −1 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, y1 + y2 ≤ 1, y1 − y2 ≥ −1, 0, otherwise a. Find the value of k that makes this a probability density function. b. Find the probabilities P(Y2 ≤ 1/2) and P(Y1 ≥ −1/2, Y2 ≤ 1/2 c. Find the marginal distributions of Y1 and of Y2. d. Determine if Y1 and Y2 are independent e....
Considerthecurvex(t)=t2,y(t)=t3 −3t,for−∞<t<∞. 2 (a) Find all t that give x intercepts and y-intercepts, and plot them....
Considerthecurvex(t)=t2,y(t)=t3 −3t,for−∞<t<∞. 2 (a) Find all t that give x intercepts and y-intercepts, and plot them. (b) Find all t which give horizontal or vertical tangents, and plot the corresponding points, with a short horizontal or vertical segment to indicate the tangent line. (c) Find the values of t for which x(t) is increasing and those for which it is decreasing. Do the same for y. (d) Determine what happens to x(t) and y(t) as t → ∞. (e) Make...
Let X and Y be T2-space. Prove that X*Y is also T2
Let X and Y be T2-space. Prove that X*Y is also T2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT