In: Advanced Math
Given y 1 ( t ) = t2 and y2 ( t ) = t ^− 1 satisfy the corresponding homogeneous equation of
t^2 y ' ' − 2 y = − 3 − t , t > 0
Then the general solution to the non-homogeneous equation can be written as y ( t ) = c1y1(t)+c2y2(t)+yp(t)
Use variation of parameters to find y p ( t ) .
Using variation of parameter we find the solution of the given differential equation.