In: Statistics and Probability
| x | |||||||||
| 120,130,100,205,185,220 | |||||||||
| 10 | The variance of the sample mean is, | ||||||||
| a | 449.839 | ||||||||
| b | 436.737 | ||||||||
| c | 424.017 | ||||||||
| d | 411.667 | ||||||||
| 11 | The upper end of the 95% interval estimate is, | ||||||||
| a | 220.7 | ||||||||
| b | 212.2 | ||||||||
| c | 203.7 | ||||||||
| d | 199.6 | ||||||||
| 12 | In the previous question to build a 95% interval estimate for the population mean number of customers with a margin of error of ±15 days, determine the required minimum sample size using a planning value of 50 days. | ||||||||
| a | 64 | ||||||||
| b | 52 | ||||||||
| c | 43 | ||||||||
| d | 35 | ||||||||
Given sample is ,
x : 120, 130 , 100 , 205, 185 , 220
Q10 )
Formula for variance of the sample mean is ,

where , s2 is sample variance.
So, s2 = 2470 { Using Excel function , =VAR() }

n is sample size = 6
So, variance of the sample mean is ,

Option d is correct !!
Q11)
Formula for upper end of confidence interval is ,

Where , 
 is sample
mean.
 =
160                       
{ using Excel function ,    =AVERAGE(
)     )
s2 = 2470 , s = sqrt(2470 ) = 49.6991
n = 6
is t critical value at given confidence level.
Confidence level = 95% = 0.95 , 
 = 1-0.95 = 0.05
, 
/2 = 0.025
degrees of freedom ( df ) = n - 1 = 6 - 1 = 5
So, 
 = 
  
=
2.5706          
{ Using Excel function , =TINV( 
 , df ) , This
function returns two tailed inverse of t distribution
=TINV( 0.05 , 5 ) = 2.5706 }
So Upper end of the 95% interval estimate is ,



Option b is correct !!
12 )
Formula for sample size is,

Where , 
 is
z critical value for given confidence level.
Confidence level = 95% = 0.95 , 
 = 1-0.95 = 0.05
, 
/2 = 0.025
So, 
 =
 =
1.96           
{ Using excel function , =NORMSINV(0.025 ) = 1.96 }
E is margin of error = 15
s is sample standard deviation = 49.6991
So sample size is ,


    
( Rounded to next integer )
Option c is correct !!