In: Statistics and Probability
x | |||||||||
120,130,100,205,185,220 | |||||||||
10 | The variance of the sample mean is, | ||||||||
a | 449.839 | ||||||||
b | 436.737 | ||||||||
c | 424.017 | ||||||||
d | 411.667 | ||||||||
11 | The upper end of the 95% interval estimate is, | ||||||||
a | 220.7 | ||||||||
b | 212.2 | ||||||||
c | 203.7 | ||||||||
d | 199.6 | ||||||||
12 | In the previous question to build a 95% interval estimate for the population mean number of customers with a margin of error of ±15 days, determine the required minimum sample size using a planning value of 50 days. | ||||||||
a | 64 | ||||||||
b | 52 | ||||||||
c | 43 | ||||||||
d | 35 |
Given sample is ,
x : 120, 130 , 100 , 205, 185 , 220
Q10 )
Formula for variance of the sample mean is ,
where , s2 is sample variance.
So, s2 = 2470 { Using Excel function , =VAR() }
n is sample size = 6
So, variance of the sample mean is ,
Option d is correct !!
Q11)
Formula for upper end of confidence interval is ,
Where , is sample mean.
= 160 { using Excel function , =AVERAGE( ) )
s2 = 2470 , s = sqrt(2470 ) = 49.6991
n = 6
is t critical value at given confidence level.
Confidence level = 95% = 0.95 , = 1-0.95 = 0.05 , /2 = 0.025
degrees of freedom ( df ) = n - 1 = 6 - 1 = 5
So, = = 2.5706
{ Using Excel function , =TINV( , df ) , This function returns two tailed inverse of t distribution
=TINV( 0.05 , 5 ) = 2.5706 }
So Upper end of the 95% interval estimate is ,
Option b is correct !!
12 )
Formula for sample size is,
Where , is z critical value for given confidence level.
Confidence level = 95% = 0.95 , = 1-0.95 = 0.05 , /2 = 0.025
So, = = 1.96 { Using excel function , =NORMSINV(0.025 ) = 1.96 }
E is margin of error = 15
s is sample standard deviation = 49.6991
So sample size is ,
( Rounded to next integer )
Option c is correct !!