Question

In: Statistics and Probability

Negative Binomial experiment is based on sequences of Bernoulli trials with probability of success p. Let...

Negative Binomial experiment is based on sequences of Bernoulli trials with probability of success p. Let x+m be the number of trials to achieve m successes, and then x has a negative binomial distribution. In summary, negative binomial distribution has the following properties

  • Each trial can result in just two possible outcomes. One is called a success and the other is called a failure.
  • The trials are independent
  • The probability of success, denoted by p, is the same on every trial.
  • The experiment consists of m successes, and x+m repeated trials, and the mth success occurs at the (x+m)th trial.

  1. Write down the probability distribution P(x=k), consistent with the notation here
  2. If you are tossing a regular coin repeatedly, what is the probability that the 3rd head occurs at the 6th time you toss it?
  3. Anne is selling girl scot cookies in her neighborhood with 20 houses. She has a target to sell 10 boxes. Suppose each house has a probability 0.6 to buy one box of her cookies. What is the probability that she sells the last box at the 15th house? What is the probability that she exhausts all 20 houses?

Solutions

Expert Solution

Given that

Negative Binomial experiment is based on sequences of Bernoulli trials with probability of success p. Let x+m be the number of trials to achieve m successes, and then x has a negative binomial distribution. In summary, negative binomial distribution has the following properties


Related Solutions

. In a sequence of 7 Bernoulli trials with probability of success p, let X be...
. In a sequence of 7 Bernoulli trials with probability of success p, let X be the number of successes not followed immediately by a failure. Find E(X) (you can use indicators)
Let the probability of success on a Bernoulli trial be 0.20. a. In nine Bernoulli trials,...
Let the probability of success on a Bernoulli trial be 0.20. a. In nine Bernoulli trials, what is the probability that there will be 8 failures? (Round your final answers to 4 decimal places.) Probability b. In nine Bernoulli trials, what is the probability that there will be more than the expected number of failures? (Round your final answers to 4 decimal places.) Probability
Shown below are the number of trials and success probability for some Bernoulli trials. Let X...
Shown below are the number of trials and success probability for some Bernoulli trials. Let X denote the total number of successes. n = 6 and p = 0.3 Determine ​P(x=4​) using the binomial probability formula. b. Determine ​P(X=4​) using a table of binomial probabilities. Compare this answer to part​ (a).
Let N be a binomial random variable with n = 2 trials and success probability p...
Let N be a binomial random variable with n = 2 trials and success probability p = 0.5. Let X and Y be uniform random variables on [0, 1] and that X, Y, N are mutually independent. Find the probability density function for Z = NXY . Hint: Find P(Z ≤ z) for z ∈ [0, 1] by conditioning on the value of N ∈ {0, 1, 2}.
Suppose 4 Bernoulli trials, each with success probability p, are conducted such that the outcomes of...
Suppose 4 Bernoulli trials, each with success probability p, are conducted such that the outcomes of the 4 experiments are mutually independent. Let the random variable X be the total number of successes over the 4 Bernoulli trials. (a) Write down the sample space for the experiment consisting of 4 Bernoulli trials (the sample space is all possible sequences of length 4 of successes and failures you may use the symbols S and F). (b) Give the support (range) X...
Suppose R is a binomial random variable with r=2 trials and success probability p=0.5. Let A...
Suppose R is a binomial random variable with r=2 trials and success probability p=0.5. Let A and B be uniform random variables on [0,1] and that A, B, R are mutually independent. Find PDF for Z=RAB. (Solve P(Z<=z) for z ∈[0,1] by conditioning on the value of R ∈{0,1,2}.)
Consider a binomial experiment with 20 trials and probability 0.35 of success on a single trial....
Consider a binomial experiment with 20 trials and probability 0.35 of success on a single trial. (a) Use the binomial distribution to find the probability of exactly 10 successes. (Round your answer to three decimal places.) (b) Use the normal distribution to approximate the probability of exactly 10 successes. (Round your answer to three decimal places.) (c) Compare the results of parts (a) and (b). These results are fairly different. These results are almost exactly the same.
Consider a binomial experiment with 15 trials and probability 0.55 of success on a single trial....
Consider a binomial experiment with 15 trials and probability 0.55 of success on a single trial. (a) Use the binomial distribution to find the probability of exactly 10 successes. (Round your answer to three decimal places.) (b) Use the normal distribution to approximate the probability of exactly 10 successes. (Round your answer to three decimal places.) (c) Compare the results of parts (a) and (b). These results are fairly different.These results are almost exactly the same.  
Consider a binomial experiment with 16 trials and probability 0.60 of success on a single trial....
Consider a binomial experiment with 16 trials and probability 0.60 of success on a single trial. (a) Use the binomial distribution to find the probability of exactly 10 successes. (b) Use the normal distribution to approximate the probability of exactly 10 successes. (c) Compare the results of parts (a) and (b).
We have a binomial experiment with n = 18 trials, each with probability p = 0.15...
We have a binomial experiment with n = 18 trials, each with probability p = 0.15 of a success. A success occurs if a student withdraws from a class, so the number of successes, x, will take on the values 0, 1, and 2. The probability of each x value, denoted f(x), can be found using a table like the one below. Note that these values are rounded to four decimal places. n x p 0.10 0.15 0.20 0.25 18...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT