In: Statistics and Probability
Use the data set attached.
Include your SPSS output in this document as part of Step 3.
Test for the significance of the correlation coefficient at the .05 level using a two-tailed test between hours of studying and grade.
x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) |
0 | 80 | 22.09 | 88.36 | 44.18 |
5 | 93 | 0.09 | 12.96 | 1.08 |
8 | 97 | 10.89 | 57.76 | 25.08 |
6 | 100 | 1.69 | 112.36 | 13.78 |
5 | 75 | 0.09 | 207.36 | -4.32 |
3 | 83 | 2.89 | 40.96 | 10.88 |
4 | 98 | 0.49 | 73.96000 | -6.0200 |
8 | 100 | 10.89 | 112.36000 | 34.980 |
6 | 90 | 1.69 | 0.36 | 0.78 |
2 | 78 | 7.29 | 129.96 | 30.78 |
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 47.00 | 894.00 | 58.10 | 836.40 | 151.20 |
mean | 4.70 | 89.40 | SSxx | SSyy | SSxy |
correlation coefficient , r = Sxy/√(Sx.Sy)
= 0.6859
correlation hypothesis test tail=
2
Ho: ρ = 0
Ha: ρ ╪ 0
n= 10
alpha,α = 0.05
correlation , r= 0.6859
t-test statistic = r*√(n-2)/√(1-r²) =
2.666
DF=n-2 = 8
p-value = 0.0285
Decison: p value < α , So, Reject
Ho
so, correlation is significant