In: Statistics and Probability
Suppose the mpg rating of cars is normally distributed. Mean = 43 SD = 2
Solution :
Given that ,
= 1 - P[(x -
) /
(40 - 43) / 2]
Using z table,
= 1 - 0.0668
= 0.9332
b) P(30 < x < 45) = P[(30 - 43)/ 2) < (x -
) /
<
(45 - 43) / 2) ]
= P(-6.5 < z < 1.00)
= P(z < 1.00) - P(z < -6.5)
Using z table,
= 0.8413 - 0
= 0.8413
c) Using standard normal table,
P(Z > z) = 90%
= 1 - P(Z < z) = 0.90
= P(Z < z) = 1 - 0.90
= P(Z < z ) = 0.10
= P(Z < -1.28 ) = 0.10
z = -1.28
Using z-score formula,
x = -1.28 * 2 + 43
x = 40.44 mpg