In: Finance
Suppose that the index model for stocks A and B is estimated from excess returns with the following results: RA = 2.50% + 0.95RM + eA RB = -1.80% + 1.10RM + eB σM = 27%; R-squareA = 0.23; R-squareB = 0.11 Assume you create portfolio P with investment proportions of 0.60 in A and 0.40 in B.
a. What is the standard deviation of the portfolio? (Do not round your intermediate calculations. Round your answer to 2 decimal places.)
b. What is the beta of your portfolio? (Do not round your intermediate calculations. Round your answer to 2 decimal places.)
c. What is the firm-specific variance of your portfolio? (Do not round your intermediate calculations. Round your answer to 4 decimal places.)
d. What is the covariance between the portfolio and the market index? (Do not round your intermediate calculations. Round your answer to 3 decimal places.)
A | B | C | D | E | F | G | H | I | J |
2 | |||||||||
3 | RA = 2.50% + 0.95RM + eA | ||||||||
4 | RB = -1.80% + 1.10RM + eB | ||||||||
5 | |||||||||
6 | R-square A | 0.23 | |||||||
7 | R-square B | 0.11 | |||||||
8 | |||||||||
9 | σM | 27% | |||||||
10 | |||||||||
11 | Using the above equation, | ||||||||
12 | A | B | |||||||
13 | Beta | 0.95 | 1.1 | ||||||
14 | Weight | 0.6 | 0.4 | ||||||
15 | For portfolio equation will be | ||||||||
16 | Rp = E(rp)+βp*RM+ep | ||||||||
17 | |||||||||
18 | Where E(rp) = ∑wiE(ri), βp= ∑wiβi and ep = ∑wiei | ||||||||
19 | |||||||||
20 | R-square is coefficient of determination which shows fraction of total variance explained by market | ||||||||
21 | R-square | =(β)2 (σM)2/(σ)2 | |||||||
22 | or | ||||||||
23 | (σ)2 | =(β)2 (σM)2/R-square | |||||||
24 | |||||||||
25 | (σA)2 | 0.286053 | =((D13*D9)^2)/D6 | ||||||
26 | (σB)2 | 0.8019 | =((E13*D9)^2)/D7 | ||||||
27 | |||||||||
28 | Total variance (σ2) of the stock which is given by following formula: | ||||||||
29 | (σ)2 | =(β)2 (σM)2+σ2(e) | |||||||
30 | |||||||||
31 | using the above equation | ||||||||
32 | σ2(e) | =(σ)2-(β)2 (σM)2 | |||||||
33 | |||||||||
34 | σ2(eA) | 0.220261 | =D25-((D13*D9)^2) | ||||||
35 | σ2(eB) | 0.713691 | =D26-((E13*D9)^2) | ||||||
36 | |||||||||
37 | σ2(ep) | =∑wi2σ2(ei) | |||||||
38 | 0.193485 | =(D14^2)*D34+(E14^2)*D35 | |||||||
39 | |||||||||
40 | βp | = ∑wiβi | |||||||
41 | 1.01 | =D14*D13+E14*E13 | |||||||
42 | |||||||||
43 | Total variance (σ2) of the portfolio is given by following formula: | ||||||||
44 | (σp)2 | =(βp)2 (σM)2+σ2(ep) | |||||||
45 | 0.26785 | =((D41*D9)^2)+D38 | |||||||
46 | |||||||||
47 | a) | ||||||||
48 | |||||||||
49 | Standard deviation of portfolio | 51.75% | =SQRT(D45) | ||||||
50 | |||||||||
51 | b) | ||||||||
52 | |||||||||
53 | Beta of the portfolio | 1.01 | =D41 | ||||||
54 | |||||||||
55 | c) | ||||||||
56 | |||||||||
57 | Firm specific variance of the portfolio | σ2(ep) | |||||||
58 | 0.1935 | =D38 | |||||||
59 | |||||||||
60 | d) | ||||||||
61 | |||||||||
62 | Covariance of the portfolio with market | = βp*(σM)2 | |||||||
63 | =1.01*((27%)^2) | ||||||||
64 | 0.074 | =D53*(D9^2) | |||||||
65 | |||||||||
66 | Hence Covariance of the portfolio with market | 0.074 | |||||||
67 |