In: Finance
Suppose that the index model for stocks A and B is estimated from excess returns with the following results: RA = 2.50% + 0.95RM + eA RB = -1.80% + 1.10RM + eB σM = 27%; R-squareA = 0.23; R-squareB = 0.11 Assume you create portfolio P with investment proportions of 0.60 in A and 0.40 in B.
a. What is the standard deviation of the portfolio? (Do not round your intermediate calculations. Round your answer to 2 decimal places.)
b. What is the beta of your portfolio? (Do not round your intermediate calculations. Round your answer to 2 decimal places.)
c. What is the firm-specific variance of your portfolio? (Do not round your intermediate calculations. Round your answer to 4 decimal places.)
d. What is the covariance between the portfolio and the market index? (Do not round your intermediate calculations. Round your answer to 3 decimal places.)
| A | B | C | D | E | F | G | H | I | J |
| 2 | |||||||||
| 3 | RA = 2.50% + 0.95RM + eA | ||||||||
| 4 | RB = -1.80% + 1.10RM + eB | ||||||||
| 5 | |||||||||
| 6 | R-square A | 0.23 | |||||||
| 7 | R-square B | 0.11 | |||||||
| 8 | |||||||||
| 9 | σM | 27% | |||||||
| 10 | |||||||||
| 11 | Using the above equation, | ||||||||
| 12 | A | B | |||||||
| 13 | Beta | 0.95 | 1.1 | ||||||
| 14 | Weight | 0.6 | 0.4 | ||||||
| 15 | For portfolio equation will be | ||||||||
| 16 | Rp = E(rp)+βp*RM+ep | ||||||||
| 17 | |||||||||
| 18 | Where E(rp) = ∑wiE(ri), βp= ∑wiβi and ep = ∑wiei | ||||||||
| 19 | |||||||||
| 20 | R-square is coefficient of determination which shows fraction of total variance explained by market | ||||||||
| 21 | R-square | =(β)2 (σM)2/(σ)2 | |||||||
| 22 | or | ||||||||
| 23 | (σ)2 | =(β)2 (σM)2/R-square | |||||||
| 24 | |||||||||
| 25 | (σA)2 | 0.286053 | =((D13*D9)^2)/D6 | ||||||
| 26 | (σB)2 | 0.8019 | =((E13*D9)^2)/D7 | ||||||
| 27 | |||||||||
| 28 | Total variance (σ2) of the stock which is given by following formula: | ||||||||
| 29 | (σ)2 | =(β)2 (σM)2+σ2(e) | |||||||
| 30 | |||||||||
| 31 | using the above equation | ||||||||
| 32 | σ2(e) | =(σ)2-(β)2 (σM)2 | |||||||
| 33 | |||||||||
| 34 | σ2(eA) | 0.220261 | =D25-((D13*D9)^2) | ||||||
| 35 | σ2(eB) | 0.713691 | =D26-((E13*D9)^2) | ||||||
| 36 | |||||||||
| 37 | σ2(ep) | =∑wi2σ2(ei) | |||||||
| 38 | 0.193485 | =(D14^2)*D34+(E14^2)*D35 | |||||||
| 39 | |||||||||
| 40 | βp | = ∑wiβi | |||||||
| 41 | 1.01 | =D14*D13+E14*E13 | |||||||
| 42 | |||||||||
| 43 | Total variance (σ2) of the portfolio is given by following formula: | ||||||||
| 44 | (σp)2 | =(βp)2 (σM)2+σ2(ep) | |||||||
| 45 | 0.26785 | =((D41*D9)^2)+D38 | |||||||
| 46 | |||||||||
| 47 | a) | ||||||||
| 48 | |||||||||
| 49 | Standard deviation of portfolio | 51.75% | =SQRT(D45) | ||||||
| 50 | |||||||||
| 51 | b) | ||||||||
| 52 | |||||||||
| 53 | Beta of the portfolio | 1.01 | =D41 | ||||||
| 54 | |||||||||
| 55 | c) | ||||||||
| 56 | |||||||||
| 57 | Firm specific variance of the portfolio | σ2(ep) | |||||||
| 58 | 0.1935 | =D38 | |||||||
| 59 | |||||||||
| 60 | d) | ||||||||
| 61 | |||||||||
| 62 | Covariance of the portfolio with market | = βp*(σM)2 | |||||||
| 63 | =1.01*((27%)^2) | ||||||||
| 64 | 0.074 | =D53*(D9^2) | |||||||
| 65 | |||||||||
| 66 | Hence Covariance of the portfolio with market | 0.074 | |||||||
| 67 | |||||||||