Question

In: Statistics and Probability

Obtain 1337 values, at random, from a uniform distribution where the smallest possible value is 20...

  1. Obtain 1337 values, at random, from a uniform distribution where the smallest possible value is 20 and the largest possible value is 40. Label the vector ex5. Also, consider ex5 the population. Report all R code

Solutions

Expert Solution

Codes:

n=1337
a=20 #smallest possible value
b=40 #largest possible value
ex5=runif(n,a,b) #sample population
ex5

R-commands and outputs:

#If you want to find sample from Uniform distribution, then 'runif()' command is used.
?runif

n=1337
a=20 #smallest possible value
b=40 #largest possible value
ex5=runif(n,a,b) #sample population
ex5

[1] 37.44443 22.85386 25.55268 34.13867 34.90982 36.41917 20.56688 26.85924
[9] 37.76932 22.11470 39.34171 27.84714 22.44367 26.57907 26.85140 31.50830
[17] 22.22885 28.10780 32.61064 34.50926 23.36941 36.04719 39.83846 21.26678
[25] 26.57805 35.07161 23.10561 22.68608 24.09707 31.98403 29.52706 36.83379
[33] 37.53727 31.59761 34.61546 21.42483 28.19043 25.18436 28.42131 21.38833
[41] 21.27891 23.05206 31.44384 32.87736 37.59773 21.59727 38.47301 24.58911
[49] 25.47827 20.21215 38.24068 25.70032 29.27257 29.27323 33.44064 38.26316
[57] 25.88221 23.78261 28.40826 26.83623 28.80815 32.07568 38.53320 25.32367
[65] 35.99039 24.59172 39.94303 34.71884 23.52079 21.17109 33.49940 26.83850
[73] 33.97350 24.82567 31.96206 21.36764 28.08132 39.65127 34.01644 32.00438
[81] 27.04158 28.02195 26.53884 35.95313 30.94638 38.52088 24.35096 28.66889
[89] 36.15304 28.48404 30.07323 25.93592 23.54465 32.24301 39.85557 36.18259
[97] 34.94877 38.94442 36.48082 36.80778 34.99228 27.86776 35.76428 21.38277
[105] 26.73963 23.80163 21.18547 22.50428 36.99352 20.15951 37.01901 23.80859
[113] 23.12834 24.76001 25.89278 22.93707 25.07090 28.39587 36.15266 28.74398
[121] 22.57940 28.74349 24.08357 38.98871 23.07059 36.79107 39.82127 33.31806
[129] 38.59134 36.46348 21.83258 25.62566 26.55068 39.33589 20.98793 24.32060
[137] 39.79638 28.73898 23.99329 21.05862 31.44803 25.04315 25.85658 38.46368
[145] 20.32649 21.54914 27.96347 33.36582 24.76277 22.79601 20.06381 20.94253
[153] 29.37505 33.82772 20.49141 37.07794 37.33968 29.78357 25.85625 37.32089
[161] 25.01674 27.05278 29.06624 36.77027 28.45000 24.65302 38.93489 27.69723
[169] 24.30233 29.54348 22.95323 30.88987 38.73861 25.79288 25.68628 31.37621
[177] 31.87634 31.49110 35.29177 21.94460 34.54024 28.37343 29.38126 22.78309
[185] 29.55582 28.07775 37.01996 33.43210 35.19681 28.18798 23.02038 26.60082
[193] 29.28589 28.86243 22.99948 38.86935 20.79464 36.32886 39.44997 23.54196
[201] 28.96638 29.19150 20.65665 30.22830 39.30653 39.13352 38.55103 29.98488
[209] 36.39977 20.35511 39.96935 38.33454 27.84070 38.21394 23.29470 22.51232
[217] 34.71697 20.84740 34.88398 34.00978 35.45228 26.48598 39.52329 22.02735
[225] 39.37173 32.38145 23.09224 34.18701 25.02038 30.91378 20.16151 31.99329
[233] 30.19077 28.98500 25.11334 34.77951 27.96658 24.50424 23.57900 35.44592
[241] 39.29078 24.09601 39.52663 37.30604 25.13207 34.07772 31.20068 33.86045
[249] 37.36189 29.24384 25.62552 25.48228 31.76586 31.28247 22.21919 22.56739
[257] 27.80595 23.10111 36.94061 32.77391 23.83434 38.22207 23.19832 27.01408
[265] 38.89751 31.56403 38.05660 29.11508 33.81744 39.59222 22.30596 35.56141
[273] 39.86110 21.75157 36.03136 38.25957 38.93911 35.60989 32.47520 27.11405
[281] 22.59267 36.75376 31.24846 37.02803 38.89316 34.04818 29.49893 22.37712
[289] 34.40515 33.80720 23.58826 32.91664 33.68673 28.79470 34.47944 30.49948
[297] 36.16452 31.30310 24.53917 23.68716 31.04297 27.83724 27.04938 37.38016
[305] 21.17161 21.89368 34.38551 24.43340 30.17351 23.08505 31.09766 30.39043
[313] 33.12646 20.65258 39.33342 35.75745 26.23064 21.56153 23.82032 20.22187
[321] 39.44991 22.90086 22.21043 29.68728 29.30535 29.25914 28.24904 26.26776
[329] 29.19834 22.13565 31.58935 33.43744 37.56794 20.66109 23.59318 22.37299
[337] 36.35814 22.65569 30.17610 38.40981 29.04873 32.27738 30.18281 35.24987
[345] 31.43540 36.97064 32.06979 32.96441 36.74847 27.14375 27.77520 31.58410
[353] 36.92125 23.33675 22.91191 32.73296 32.93730 22.93215 34.80242 37.82609
[361] 22.19181 30.72900 23.20165 29.08877 20.67180 31.03041 31.37516 23.18516
[369] 31.33909 33.66736 28.97468 30.95219 34.73373 38.59329 38.50007 38.94010
[377] 36.13533 25.30760 28.44652 26.90364 24.48732 34.59476 28.55147 36.40310
[385] 34.38121 24.63503 32.28504 20.23850 35.46452 21.50411 31.61796 24.27685
[393] 21.67861 36.36191 38.45245 34.85080 29.17755 31.40656 29.80216 26.08895
[401] 32.49062 23.72859 30.10504 33.51074 23.07780 22.81592 21.16045 28.59223
[409] 22.35108 31.06305 25.39489 20.92713 32.32457 24.32681 22.61372 21.50129
[417] 21.96972 29.95900 21.34590 37.20577 38.54846 29.69923 33.04416 20.91606
[425] 21.78223 39.61180 34.53290 28.49922 28.82962 26.93962 33.15480 24.72876
[433] 27.21629 28.30402 20.53875 29.79679 38.73800 35.39452 37.74127 24.81353
[441] 37.51905 35.21231 32.88950 25.16858 38.85058 29.25829 29.82526 30.51694
[449] 28.59264 37.08665 22.73979 39.49163 21.23666 36.01118 34.07031 39.16488
[457] 29.62652 20.35646 33.75840 21.77665 32.22942 28.45146 29.70191 32.25130
[465] 20.21373 38.37366 32.80108 33.16846 39.53944 28.65446 26.18018 32.39644
[473] 29.16276 37.52054 36.52295 32.22974 39.80000 21.77970 21.58355 39.58537
[481] 21.71593 32.63707 21.46804 34.83216 20.72023 35.10163 24.25059 38.68376
[489] 34.44688 38.76794 36.10186 36.53047 24.08467 27.01854 30.13879 37.83632
[497] 34.66499 27.81906 28.58506 20.88785 29.48370 29.80383 35.99428 36.62422
[505] 22.80741 33.05250 37.73232 33.88693 37.92592 27.93910 25.19136 21.55313
[513] 24.10525 29.16843 38.10172 21.13606 33.76516 24.49635 29.61880 31.57998
[521] 35.42522 24.16056 35.49578 24.13858 36.41007 23.73303 34.74091 33.88964
[529] 29.58057 25.65051 36.40212 26.47968 37.87736 38.09849 27.53750 30.50756
[537] 23.84222 34.47955 29.69079 38.63576 38.15263 25.68463 37.95311 30.29232
[545] 25.91672 29.89303 30.48015 25.52345 36.32759 29.61717 31.78119 21.18619
[553] 35.60707 22.91428 23.52210 38.04122 25.56117 31.63510 23.42024 26.66518
[561] 37.15889 27.86417 27.29400 38.66633 23.28238 23.54004 33.37558 36.14089
[569] 36.55267 20.02563 39.63175 21.29302 29.27912 27.70796 39.49817 25.92554
[577] 38.41770 38.95234 24.42464 35.46473 31.60514 24.65128 20.46599 39.60276
[585] 22.88668 27.20770 32.93586 39.82962 33.94778 36.79857 35.33639 36.19661
[593] 26.61333 24.52980 31.51137 37.60312 32.47763 20.54906 22.28286 29.29924
[601] 21.56360 21.68786 33.35448 29.16745 39.50329 20.05162 28.43792 22.23526
[609] 29.12429 37.87654 27.65988 37.90405 26.76173 33.51723 30.47122 27.88095
[617] 24.40962 20.19335 33.45784 34.33914 21.93938 24.88883 39.92386 31.40882
[625] 25.41609 22.80910 21.08938 34.97072 22.57117 26.45379 38.57337 24.53766
[633] 27.36127 20.41018 39.82809 37.14036 39.21047 21.53487 24.46681 35.30406
[641] 24.09289 20.09691 31.84607 26.39351 20.59315 25.54435 37.18907 29.02453
[649] 35.88184 32.36370 33.42627 28.52034 39.44867 33.92641 31.67157 23.96080
[657] 24.37775 33.46176 22.20205 34.09331 30.23887 38.31840 32.88380 28.63997
[665] 29.18877 21.63467 36.01602 39.39629 31.45394 32.50051 37.23939 36.14716
[673] 33.03062 21.23595 23.69804 39.89051 34.56999 23.23460 23.31375 34.06042
[681] 29.12595 31.21263 30.78908 35.79161 35.24239 26.16952 38.51852 20.50507
[689] 23.83241 35.53306 35.89460 27.06428 35.41782 36.80620 21.11190 36.69192
[697] 30.61045 34.41466 20.87253 32.20716 26.84875 25.28345 32.86431 37.29685
[705] 20.20030 27.37351 28.76394 24.11564 29.60962 26.70421 39.96367 22.54126
[713] 23.19974 26.00337 35.68549 20.63443 30.99604 25.27397 21.81258 26.03377
[721] 38.82823 21.09273 37.11210 39.52376 38.91409 24.07311 36.22817 27.34863
[729] 36.82031 20.59657 31.18145 28.05304 22.64806 34.86221 34.80773 31.53400
[737] 38.62999 38.98056 23.93133 34.03822 24.50354 37.15181 20.70047 23.50853
[745] 39.85570 23.53799 30.89024 24.88017 24.45723 34.54515 34.87022 36.76908
[753] 31.58437 31.24125 28.34487 39.58245 38.63137 30.93409 37.09380 28.37570
[761] 27.08861 22.59606 38.02035 30.41724 32.45914 38.36526 21.97138 37.97500
[769] 33.02356 25.99820 37.67948 23.31689 25.22015 32.36687 37.27254 20.14801
[777] 35.08701 32.67971 31.42847 36.89013 24.76980 32.68052 22.72011 27.46789
[785] 30.10893 24.39622 28.09162 31.83347 37.70442 25.88295 25.74656 31.93362
[793] 27.90208 23.08321 37.54785 24.20398 21.46075 34.73997 20.22751 28.58154
[801] 34.72618 25.49856 26.92991 36.61006 33.07982 25.30269 32.51977 25.85076
[809] 30.67763 32.96125 31.13802 22.58165 26.76705 36.28934 33.15781 28.48066
[817] 28.74532 31.63017 30.45668 24.66846 32.81047 29.14478 26.53111 20.85640
[825] 38.53957 36.75269 27.85120 36.05165 36.54355 35.93270 37.02188 38.90271
[833] 28.94870 33.99993 24.22206 21.28919 35.09731 20.18909 37.41793 32.23470
[841] 28.64459 24.20003 34.55885 36.44480 30.06174 37.45690 27.51994 35.26520
[849] 24.36186 21.10115 37.01030 33.18732 33.73682 21.73027 21.91320 35.05487
[857] 29.77307 21.79907 33.20808 33.69677 34.62124 21.39256 37.03454 29.12984
[865] 29.49949 30.23337 33.96697 26.74204 21.70528 34.93218 29.96494 32.10977
[873] 39.31565 35.15921 25.94789 21.16661 27.95536 29.49747 23.58082 26.71328
[881] 28.38510 31.20938 32.35902 30.52439 31.04716 33.89139 31.15589 25.71266
[889] 21.77425 37.92777 39.61656 29.32532 35.73724 33.90509 31.84473 33.01428
[897] 37.97387 31.67207 22.80847 20.12994 32.57108 23.82522 28.47988 33.75984
[905] 21.18193 38.66008 32.20909 23.33823 26.53705 26.86717 21.72864 36.22529
[913] 39.61719 31.54254 26.60391 31.76456 31.14545 28.66534 36.40379 26.56496
[921] 32.52424 33.44114 32.09175 25.20265 20.73516 28.96287 39.29134 24.10875
[929] 24.46763 37.49762 31.45933 30.77973 24.30688 39.80223 32.33684 22.55371
[937] 33.76038 24.05287 24.53912 31.99174 34.46715 23.07533 25.65917 34.33527
[945] 34.83023 20.11926 35.97845 35.21181 26.24506 21.58586 31.04475 21.54089
[953] 30.16375 39.29331 37.30598 27.73148 38.22806 38.26464 26.34984 28.42113
[961] 29.16855 22.55105 29.42034 22.72920 24.12290 24.38911 38.82333 30.50651
[969] 29.82550 29.96872 20.55303 25.27960 27.75875 20.95490 35.82133 37.42117
[977] 28.08053 28.22594 27.04300 24.04042 20.12749 25.91210 23.13887 33.04988
[985] 38.50262 30.64858 25.43747 39.41031 39.32143 29.83096 20.64043 31.45061
[993] 21.69129 29.50969 23.91762 38.62675 33.22250 21.20839 38.05674 34.95600
[1001] 38.39479 32.11708 34.95710 22.73206 22.59576 37.22813 34.69818 28.82297
[1009] 35.41819 34.10824 31.55014 33.10897 37.77678 24.95666 21.85024 39.36932
[1017] 28.65620 27.83494 24.43920 29.61697 23.24833 30.26902 32.91625 29.32109
[1025] 35.32541 34.45053 39.92464 30.79728 36.62053 34.78728 31.40599 32.72442
[1033] 33.09633 24.79033 21.60704 38.29882 20.76691 27.55235 35.12598 34.13183
[1041] 27.03168 36.02811 32.86910 35.75388 35.51096 23.55336 35.36400 24.57194
[1049] 23.99569 39.51837 33.51999 29.83288 25.04258 21.89462 23.63260 38.66895
[1057] 33.49688 20.85231 28.86279 30.34891 24.78983 34.03514 38.27635 33.04594
[1065] 24.84552 22.53045 24.29679 38.21325 37.72524 20.51006 23.43805 22.21896
[1073] 26.25589 24.76753 32.83814 39.81002 28.25109 31.47877 33.70522 24.45579
[1081] 22.80899 37.70312 33.96223 38.65004 26.46088 29.35877 31.45447 25.63523
[1089] 21.08310 30.13768 25.37489 38.87555 34.10125 35.25781 39.15724 27.90122
[1097] 29.53235 34.00479 39.55342 20.14550 36.77899 24.39820 22.31366 27.82254
[1105] 38.02076 25.32467 31.36218 37.78026 22.80289 37.83981 37.26864 22.96660
[1113] 36.43987 36.43055 29.23215 35.59282 26.01707 37.13368 35.12031 27.63642
[1121] 24.86702 28.51020 20.82562 33.88718 36.31039 32.13378 23.56884 38.41072
[1129] 31.55738 38.68272 31.32859 21.10607 21.06874 24.16004 28.36673 37.17669
[1137] 38.78827 24.98751 36.30919 31.69178 24.31432 26.73982 31.06279 36.17664
[1145] 31.95933 26.90716 20.72190 28.68175 33.99154 33.78261 39.86288 25.09656
[1153] 27.41881 23.99574 36.95749 26.36974 33.85454 34.13124 28.13720 35.98422
[1161] 20.99135 22.36977 25.41853 27.58991 33.39912 20.88014 23.31223 33.28288
[1169] 23.27700 35.67931 32.90790 28.11872 20.09869 35.85434 32.76202 28.32212
[1177] 30.30408 39.65505 27.58790 31.89169 32.03168 34.47239 24.87609 29.16533
[1185] 23.62791 26.42265 28.11766 35.36951 39.97243 31.62841 29.64581 39.07407
[1193] 27.67318 30.02042 38.98853 29.87248 23.93979 37.76178 26.76621 24.29434
[1201] 38.17098 32.45913 22.79323 32.87858 38.98798 39.00154 33.95487 25.28406
[1209] 22.08588 21.92996 20.42805 25.33250 39.98708 30.06389 25.58187 34.21931
[1217] 33.25182 25.45734 22.30007 24.20658 38.75073 24.98213 37.70569 32.18502
[1225] 30.95213 36.66916 34.55917 22.78608 36.89627 39.48784 39.12049 26.83576
[1233] 25.21898 38.72326 21.08520 30.49115 37.85975 23.38665 37.32009 21.86530
[1241] 34.48158 21.99407 20.95294 20.33925 31.71479 37.24950 30.71276 33.51342
[1249] 33.24450 28.51889 32.53142 29.02925 35.09964 24.29915 39.57482 38.64853
[1257] 36.67884 21.62433 21.50714 26.52948 23.24929 27.30778 35.34853 29.59355
[1265] 28.41244 25.80244 26.74214 32.88465 35.42265 26.68940 34.43989 30.79127
[1273] 34.65353 24.00663 21.49609 27.88370 36.29090 36.09146 33.89853 32.14439
[1281] 23.05061 30.06283 30.27128 24.80362 32.58015 22.37614 34.44332 21.25279
[1289] 26.83810 33.14457 29.18074 25.86872 30.82423 31.53291 31.68783 21.06251
[1297] 34.77903 21.58715 20.66450 33.16818 26.86168 28.29369 28.69470 31.46163
[1305] 33.93343 22.55652 20.94859 34.11536 28.61642 23.64505 28.14299 21.36677
[1313] 34.93466 33.77715 31.12821 32.71393 38.52447 35.27184 28.63301 22.35876
[1321] 25.59009 29.51975 39.73482 29.41396 29.32627 21.50208 30.47584 23.41889
[1329] 23.56632 21.16424 21.23188 31.29446 23.01665 24.72118 27.59242 24.45668
[1337] 36.58423
mean(ex5)
[1] 29.98415
min(ex5) #smallest value from the sample
[1] 20.02563
max(ex5) #largest value from the sample
[1] 39.98708


Related Solutions

A random variable X follows a uniform distribution on the interval from 0 to 20. This...
A random variable X follows a uniform distribution on the interval from 0 to 20. This distribution has a mean of 10 and a standard deviation of 5.27. We take a random sample of 50 individuals from this distribution. What is the approximate probability that the sample mean is less than 9.5
Let X1, . . . , Xn be a random sample from a uniform distribution on...
Let X1, . . . , Xn be a random sample from a uniform distribution on the interval [a, b] (i) Find the moments estimators of a and b. (ii) Find the MLEs of a and b.
Suppose that X1,X2,...,Xn form a random sample from a uniform distribution on the interval [θ1,θ2], where...
Suppose that X1,X2,...,Xn form a random sample from a uniform distribution on the interval [θ1,θ2], where (−∞ < θ1 < θ2 < ∞). Find MME for both θ1 and θ2.
If a random variable has a uniform distribution over the range 10 ≤X≤ 20, what is...
If a random variable has a uniform distribution over the range 10 ≤X≤ 20, what is the probability that the random variable takes a value in the range [13.75, 17.25]?
Let X1,X2, . . . , Xn be a random sample from the uniform distribution with...
Let X1,X2, . . . , Xn be a random sample from the uniform distribution with pdf f(x; θ1, θ2) = 1/(2θ2), θ1 − θ2 < x < θ1 + θ2, where −∞ < θ1 < ∞ and θ2 > 0, and the pdf is equal to zero elsewhere. (a) Show that Y1 = min(Xi) and Yn = max(Xi), the joint sufficient statistics for θ1 and θ2, are complete. (b) Find the MVUEs of θ1 and θ2.
Let Y1, Y2, . . ., Yn be a random sample from a uniform distribution on...
Let Y1, Y2, . . ., Yn be a random sample from a uniform distribution on the interval (θ - 2, θ). a) Show that Ȳ is a biased estimator of θ. Calculate the bias. b) Calculate MSE( Ȳ). c) Find an unbiased estimator of θ. d) What is the mean square error of your unbiased estimator? e) Is your unbiased estimator a consistent estimator of θ?
Suppose that X1, ..., Xn form a random sample from a uniform distribution for on the...
Suppose that X1, ..., Xn form a random sample from a uniform distribution for on the interval [0, θ]. Show that T = max(X1, ..., Xn) is a sufficient statistic for θ.
A distribution and the observed frequencies of the values of a variable from a simple random...
A distribution and the observed frequencies of the values of a variable from a simple random sample of the population are provided below. Use the​ chi-square goodness-of-fit test to​ decide, at the specified significance​ level, whether the distribution of the variable differs from the given distribution. ​Distribution: 0.18750.1875​, 0.18750.1875​, 0.250.25​, 0.3750.375    Observed​ frequencies: 1818​, 1919​, 2020​, 3939 Significance levelequals=0.05
A distribution and the observed frequencies of the values of a variable from a simple random...
A distribution and the observed frequencies of the values of a variable from a simple random sample of the population are provided. Use the​ chi-squaregoodness-of-fit test to​ decide, at a significance​ level of 0.10, whether the distribution of the variable differs from the given distribution. (You need to add the expected column based on the distribution) a.       Specify which Chi-Square test you are doing (Goodness-of-Fit or Test for Independence): b.       Formulate the null (H0) and alternate (HA) hypotheses: c.       Specify the level of...
A distribution and the observed frequencies of the values of a variable from a simple random...
A distribution and the observed frequencies of the values of a variable from a simple random sample of the population are provided below. Use the​ chi-square goodness-of-fit test to​ decide, at the specified significance​ level, whether the distribution of the variable differs from the given distribution. ​ Distribution: 0.3​, 0.2​, 0.2​, 0.2​, 0.1   Observed​ frequencies: 12​, 9​, 8​, 17​, 4 Significance level = 0.10
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT