In: Statistics and Probability
The Bureau of Meteorology of the Australian Government provided the mean annual rainfall (in millimeters) in Australia 1983–2002 as follows (http://www.bom.gov.au/ climate/change/rain03.txt) 499.2, 555.2, 398.8, 391.9, 453.4, 459.8, 483.7, 417.6, 469.2, 452.4, 499.3, 340.6, 522.8, 469.9, 527.2, 565.5, 584.1, 727.3, 558.6, 338.6 Construct a 99% two-sided confidence interval for the mean annual rainfall. Assume population is approximately normally distributed. Round your answers to 2 decimal places. less-than-or-equal-to mu less-than-or-equal-to
Values ( X ) | Σ ( Xi- X̅ )2 | |
499.2 | 32.49 | |
555.2 | 3806.89 | |
398.8 | 8968.09 | |
391.9 | 10322.56 | |
453.4 | 1608.01 | |
459.8 | 1135.69 | |
483.7 | 96.04 | |
417.6 | 5760.81 | |
469.2 | 590.49 | |
452.4 | 1689.21 | |
499.3 | 33.64 | |
340.6 | 23378.41 | |
522.8 | 858.49 | |
469.9 | 556.96 | |
527.2 | 1135.69 | |
565.5 | 5184 | |
584.1 | 8208.36 | |
727.3 | 54662.44 | |
558.6 | 4238.01 | |
338.6 | 23994.01 | |
Total | 9376.5 | 156260.29 |
Mean X̅ = Σ Xi / n
X̅ = 9376.5 / 19 = 493.5
Sample Standard deviation SX = √ ( (Xi - X̅
)2 / n - 1 )
SX = √ ( 156260.29 / 19 -1 ) = 93.1726
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
t(α/2, n-1) = t(0.01 /2, 19- 1 ) = 2.878 ( Critical value from t
table )
493.5 ± t(0.01/2, 19 -1) * 93.1726/√(19)
Lower Limit = 493.5 - t(0.01/2, 19 -1) 93.1726/√(19)
Lower Limit = 431.98
Upper Limit = 493.5 + t(0.01/2, 19 -1) 93.1726/√(19)
Upper Limit = 555.02
99% Confidence interval is ( 431.98 , 555.02 )