In: Finance
Consider the following information on Stocks A, B, C and their returns (in decimals) in each state: State Prob. of State A B C Boom 20% 0.34 0.2 0.14 Good 45% 0.13 0.09 0.08 Poor 25% 0.01 0.01 0.04 Bust 10% -0.08 -0.03 -0.03 If your portfolio is invested 25% in A, 40% in B, and 35% in C, what is the standard deviation of the portfolio in percent? Answer to two decimals, carry intermediate calcs. to at least four decimals.
A | |||||
Scenario | Probability | Return | =rate of return * probability | Actual return -expected return(A) | (A)^2* probability |
Boom | 0.2 | 0.34 | 0.068 | 0.219 | 0.0095922 |
Good | 0.45 | 0.13 | 0.0585 | 0.009 | 3.645E-05 |
Poor | 0.25 | 0.01 | 0.0025 | -0.111 | 0.00308025 |
Bust | 0.1 | -0.08 | -0.008 | -0.201 | 0.0040401 |
Expected return = | sum of weighted return = | 0.121 | Sum= | 0.016749 | |
Standard deviation of A | =(sum)^(1/2) | 0.129417928 | |||
Coefficient of variation= | STD DEV/RETURN= | 1.06956965 | |||
B | |||||
Scenario | Probability | Return | =rate of return * probability | Actual return -expected return(B) | (B)^2* probability |
Boom | 0.2 | 0.2 | 0.04 | 0.12 | 0.00288 |
Good | 0.45 | 0.09 | 0.0405 | 0.01 | 4.5E-05 |
Poor | 0.25 | 0.01 | 0.0025 | -0.07 | 0.001225 |
Bust | 0.1 | -0.03 | -0.003 | -0.11 | 0.00121 |
Expected return = | sum of weighted return = | 0.08 | Sum= | 0.00536 | |
Standard deviation of B | =(sum)^(1/2) | 0.073212021 | |||
Coefficient of variation= | STD DEV/RETURN= | 0.915150261 | |||
C | |||||
Scenario | Probability | Return | =rate of return * probability | Actual return -expected return(C) | (C)^2* probability |
Boom | 0.2 | 0.14 | 0.028 | 0.06 | 0.00072 |
Good | 0.45 | 0.08 | 0.036 | 0 | 0 |
Poor | 0.25 | 0.04 | 0.01 | -0.04 | 0.0004 |
Bust | 0.1 | -0.03 | -0.003 | -0.11 | 0.00121 |
Expected return = | sum of weighted return = | 0.071 | Sum= | 0.00233 | |
Standard deviation of C | =(sum)^(1/2) | 0.048270074 | |||
Coefficient of variation= | STD DEV/RETURN= | 0.679860191 | |||
Covariance A B: | |||||
Scenario | Probability | Actual return -expected return(A) | Actual return -expected return(B) | (A)*(B)*probability | |
Boom | 0.2 | 0.2190 | 0.12 | 0.005256 | |
Good | 0.45 | 0.009 | 0.01 | 0.0000405 | |
Poor | 0.25 | -0.11 | -0.07 | 0.0019425 | |
Bust | 0.1 | -0.201 | -0.11 | 0.002211 | |
Covariance=sum= | 0.00945 | ||||
Correlation A&B= | Covariance/(std devA*std devB)= | 0.997366949 | |||
Covariance A C: | |||||
Scenario | Probability | Actual return -expected return(A) | Actual return -expected return(C) | (A)*(C)*probability | |
Boom | 0.2 | 0.219 | 0.06 | 0.002628 | |
Good | 0.45 | 0.009 | 0 | 0 | |
Poor | 0.25 | -11.10% | -0.04 | 0.00111 | |
Bust | 0.1 | -0.201 | -0.11 | 0.002211 | |
Covariance=sum= | 0.005949 | ||||
Correlation A&C= | Covariance/(std devA*std devC)= | 0.952295138 | |||
Covariance B C: | |||||
Scenario | Probability | Actual return -expected return(B) | Actual return -expected return(C) | (A)*(B)*probability | |
Boom | 0.2 | 0.12 | 0.06 | 0.00144 | |
Good | 0.45 | 0.01 | 0 | 0 | |
Poor | 0.25 | -0.07 | -0.04 | 0.0007 | |
Bust | 0.1 | -0.11 | -0.11 | 0.00121 | |
Covariance=sum= | 0.00335 | ||||
Correlation B&C= | Covariance/(std devB*std devC)= | 0.947947863 | |||
Expected return= | Wt A*Return A+Wt B*Return B+Wt C*Return C | ||||
Expected return= | 0.25*12.1+0.4*8+0.35*7.1 | ||||
Expected return= | 8.71 | ||||
Variance= | =w2A*σ2(RA) + w2B*σ2(RB) + w2C*σ2(RC)+ 2*(wA)*(wB)*Cor(RA, RB)*σ(RA)*σ(RB) + 2*(wA)*(wC)*Cor(RA, RC)*σ(RA)*σ(RC) + 2*(wC)*(wB)*Cor(RC, RB)*σ(RC)*σ(RB) | ||||
Variance= | 0.006058913 | ||||
Standard deviation= | (variance)^0.5 | ||||
Standard deviation%= | 7.78 |