Question

In: Statistics and Probability

The data presented in Problem 7 are analyzed using multiple linear regression analysis and the models...

The data presented in Problem 7 are analyzed using multiple linear regression analysis and the models are shown here. In the models, the data are coded as 1 = new medication and 0 = standard medication, and age 65 and older is coded as 1 = yes and 0 = no. ŷ = 53.85 − 23.54 (Medication) ŷ = 45.31 − 19.88 (Medication) + 14.64 (Age 65 +) ŷ = 45.51 − 20.21 ( Medication ) + 14.29 ( Age 65 + ) + 0.75 ( Medication × Age 65 + ) Patients < 65 : ˆ y = 45.51 − 20.21 ( Medication ) Patients 65 + : ˆ y = 59.80 − 19.47 ( Medication ) Does it appear that there is effect modification by age? Justify your response using the preceding models.

Based on your answers to Problem 8 and Problem 9, how should the effect of the treatment be summarized? Should results be reported separately by age group or combined? Should the effect of treatment be adjusted for age? Justify your response using the models presented in Problem 9.

Solutions

Expert Solution


Related Solutions

9. The data presented in Problem 7 are analyzed using muliple linear regression analysis and the...
9. The data presented in Problem 7 are analyzed using muliple linear regression analysis and the models are shown here. In the models, the data are coded as 1= new treatment and 0= standard treatment, and age greater than 65 is coded as 1= yes and 0= no. y= 53.85- 23.54 (Treatment) y= 45.31- 19.88 (Treatment) + 14.64 (Age > 65) y= 45.51 - 20.21 (Treatment) + 14.29 (Age> 65) + .75 (Treatment X Age > 65) Patients < 65...
I'm using 2005 NFL stats to come up with a multiple linear regression analysis models with...
I'm using 2005 NFL stats to come up with a multiple linear regression analysis models with the winning percentage being the dependent variable. My question would be, what are the most significant variables that are used in deciding an NFL team's capacity to win? Passing yards, rushing game, defense or field goals are some of my independent variables. But I’m considering adding the defensive stats to the regression. How do I complete the introduction and model subtopics for my presentation?...
I'm using 2005 NFL stats to come up with a multiple linear regression analysis models with...
I'm using 2005 NFL stats to come up with a multiple linear regression analysis models with the winning percentage being the dependent variable. My question would be, what are the most significant variables that are used in deciding an NFL team's capacity to win? Passing yards, rushing game, defense or field goals are some of my independent variables. But I’m considering adding the defensive stats to the regression. How do I complete my presentation subtopics? Presentation: I. Introduction: Summarize your...
Run a linear regression using Excel’s Data Analysis regression tool. Construct the linear regression equation and...
Run a linear regression using Excel’s Data Analysis regression tool. Construct the linear regression equation and determine the predicted total sales value if the number of promotions is 6. Is there a significant relationship? Clearly explain your reasoning using the regression results. Number of Promotions Total Sales 3 2554 2 1746 11 2755 14 1935 15 2461 4 2727 5 2231 14 2791 12 2557 4 1897 2 2022 7 2673 11 2947 11 1573 14 2980
Using the following data, conduct a linear regression analysis (by hand). In this analysis, you are...
Using the following data, conduct a linear regression analysis (by hand). In this analysis, you are testing whether SAT scores are predictive of overall college GPA. Also, write out the regression equation. How would you interpret your results? SAT Score GPA 670 1.2 720 1.8 750 2.3 845 1.9 960 3.0 1,000 3.3 1,180 3.2 1,200 3.4 1,370 2.9 1,450 3.8 1,580 4.0 1,600 3.9
USING MINITAB 13.2 - Multiple Linear Regression Exercise – Stock Price Data File: as above The...
USING MINITAB 13.2 - Multiple Linear Regression Exercise – Stock Price Data File: as above The stock broker now wants to include additional predictor variables to determine the driving factors for the stock price increase of Company A. Perform a multiple linear regression analysis between Company A and the 10 Yr. T, GDP and Unemployment (columns C1, C3, C4, and C5). Use the Minitab data file Regression.MTW. Company A   Company B   10-Yr T   GDP ($millions)   Unemployment 36.25   30   2.33   7308755  ...
Describe how simple linear regression analysis and multiple regression are used to support areas of industry...
Describe how simple linear regression analysis and multiple regression are used to support areas of industry research, academic research, and scientific research.
i. Use MS Excel Data Analysis ToolPak to perform a multiple regression analysis using Quality as...
i. Use MS Excel Data Analysis ToolPak to perform a multiple regression analysis using Quality as the response variable and Helpfulness and Clarity as the explanatory variables. Write down the corresponding coefficient estimates and provide the regression output. j. Perform an F-test for the overall usefulness of the model in part i) using a 5% significance level. Make sure you follow all the steps for hypothesis testing indicated in the Instructions section and clearly state your conclusion. k. Test manually...
Using the data from boston_housing.xls (accessible online) a.) do the appropriate multiple linear regression model procedures...
Using the data from boston_housing.xls (accessible online) a.) do the appropriate multiple linear regression model procedures to obtain a final model
The following data contains the characteristics of 30 motorcycles that will be analyzed using a Regression...
The following data contains the characteristics of 30 motorcycles that will be analyzed using a Regression model. You will study the relationship between a motorcycles' engine power (measured in horsepower) and the motorcycles' weight (measured in pounds). Power (cf): 145 215 165 85 225 87 175 210 158 86 150 150 76 170 208 150 215 225 220 153 175 130 140 165 180 150 190 110 150 86 Weight (lb): 4082 4735 3693 2310 4951 2672 4464 4382 4363...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT