In: Chemistry
What fraction of 1,6-hexanedoic acid (adipic acid) is in each form (H2A, HA−, A2−) at pH 5.00?
Represent hexane-1,6-dioic acid (adipic acid) as H2A and write down the step-wise dissociation:
H2A <=====> H+ + HA-; pK1 = 4.43; ====> K1 = 3.71*10-5
HA- <=====> H+ + A2-; pK2 = 5.41; ====> K2 = 3.89*10-6
Again, set up the equations for HA- and A2- in terms of K1 and K2.
K1 = [HA-][H+]/[H2A]
====> [HA-] = [H2A].(K1/[H+])
K2 = [H+][A2-]/[HA-]
====> [A2-] = [HA-](K2/[H+]) = [H2A]*K1K2/[H+]2
Mass balance equation:
C = [H2A] + [HA-] + [A2-] = [H2A] + [H2A]*K1/[H+] + [H2A]*K1K2/[H+]2
= [H2A](1 + K1/[H+] + K1K2/[H+]2)
Fraction of H2A in the mixture, α (H2A) = [H2A]/C = 1/(1 + K1/[H+] + K1K2/[H+]2) = [H+]2/([H+]2 + K1[H+] + K1K2)
Given pH = 5.0, [H+] = 1.0*10-5
Plug in the value to obtain
α (H2A) = (1.0*10-5)2/[(1.0*10-5)2 + (3.71*10-5)*(1.0*10-5) + (3.71*10-5)*(3.89*10-6)] = (1.0*10-10)/(1.0*10-10 + 3.71*10-10 + 3.89*10-11) = 1.0*10-10/5.099*10-10 = 0.196 (ans).
α (HA-) = [HA-]/C = [H2A].(K1/[H+])/[H2A](1 + K1/[H+] + K1K2/[H+]2) = K1[H+]/([H+]2 + K1[H+] + K1K2) = (3.71*10-5)*(1.0*10-5)/[(1.0*10-5)2 + (3.71*10-5)*(1.0*10-5) + (3.71*10-5)*(3.89*10-6)] = (3.71*10-10)/(6.153*10-10) = 0.603 (ans).
α (A2-) = [A2-]/C = K1K2/([H+]2 + K1[H+] + K1K2) = (3.71*10-5)*(3.89*10-6)/[(1.0*10-5)2 + (3.71*10-5)*(1.0*10-5) + (3.71*10-5)*(3.89*10-6)] = 1.443*10-10/(6.153*10-10) = 0.234 (ans).