In: Statistics and Probability
Explore the relationship between the selling price appraised value and the selling price.
(Draw a scatterplot and then do simple regression.)
. Draw a scatterplot first. What is the regression equation for Selling Price based on Appraised Value?
2. For which of the remaining variables is the relationship with the home's selling price Stronger?
3. Find a regression equation that takes into account ALL the variables in the data set.
4. What percent of a home's selling price is associated with all these v
House | Appraised Value | Selling Price (Y) | Square Feet (X) | Bedrooms (X) | Bathrooms(X) |
1 | 119,370 | 121,870 | 2050 | 4 | 5 | |
2 | 148,930 | 150,250 | 2200 | 4 | 4 | |
3 | 130,390 | 122,780 | 1590 | 3 | 3 | |
4 | 135,700 | 144,350 | 1860 | 3 | 3 | |
5 | 126,300 | 116,200 | 1210 | 2 | 3 | |
6 | 137,080 | 139,490 | 1710 | 3 | 2 | |
7 | 123,490 | 115,730 | 1670 | 3 | 3 | |
8 | 150,830 | 140,590 | 1780 | 3 | 4 | |
9 | 123,480 | 120,290 | 1520 | 4 | 4 | |
10 | 132,050 | 147,250 | 1830 | 2 | 3 | |
11 | 148,210 | 152,260 | 1700 | 3 | 3 | |
12 | 139,530 | 144,800 | 1720 | 3 | 4 | |
13 | 114,340 | 107,060 | 1670 | 3 | 4 | |
14 | 140,040 | 147,470 | 1650 | 3 | 3 | |
15 | 136,010 | 135,120 | 1610 | 2 | 1 | |
16 | 140,930 | 140,240 | 1570 | 3 | 4 | |
17 | 132,420 | 129,890 | 1650 | 4 | 5 | |
18 | 118,300 | 121,140 | 1640 | 3 | 4 | |
19 | 122,140 | 111,230 | 1420 | 2 | 3 | |
20 | 149,820 | 145,140 | 2070 | 4 | 3 | 149,820 |
1)
Following is the scatter plot of selling price against appraised value-
Then you can perform the simple linear regression in excel to get the following output -
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.875729814 | |||||
R Square | 0.766902707 | |||||
Adjusted R Square | 0.753952858 | |||||
Standard Error | 7123.208755 | |||||
Observations | 20 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 3004878321 | 3004878321 | 59.22097405 | 4.23985E-07 | |
Residual | 18 | 913321853.5 | 50740102.97 | |||
Total | 19 | 3918200175 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | -17575.57081 | 19587.02547 | -0.897306783 | 0.381400421 | -58726.38432 | 23575.2427 |
Appraised Value | 1.125611164 | 0.146268436 | 7.69551649 | 4.23985E-07 | 0.818312582 | 1.432909745 |
Thus, the fitted regression model is -
Selling Price = -17575.57081 + 1.125611164(Appraised Value)
____________________________________
2)
The regression output for other individual variables is as shown -
a) Selling Price vs Square Feet -
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.520865503 | |||||
R Square | 0.271300873 | |||||
Adjusted R Square | 0.230817588 | |||||
Standard Error | 12594.50729 | |||||
Observations | 20 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 1063011126 | 1063011126 | 6.70155284 | 0.01853284 | |
Residual | 18 | 2855189049 | 158621613.8 | |||
Total | 19 | 3918200175 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 75783.99611 | 22149.37143 | 3.421496468 | 0.003043084 | 29249.8935 | 122318.0987 |
Square Feet (X) | 33.33734108 | 12.87784624 | 2.588735761 | 0.01853284 | 6.281990088 | 60.39269208 |
b) Selling Price vs Bedrooms-
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.133407753 | |||||
R Square | 0.017797628 | |||||
Adjusted R Square | -0.03676917 | |||||
Standard Error | 14622.02582 | |||||
Observations | 20 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 69734671.09 | 69734671.09 | 0.326162227 | 0.574989661 | |
Residual | 18 | 3848465504 | 213803639.1 | |||
Total | 19 | 3918200175 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 124143.9106 | 15261.53921 | 8.134429231 | 1.9314E-07 | 92080.60653 | 156207.2147 |
Bedrooms (X) | 2791.340782 | 4887.604194 | 0.571106143 | 0.574989661 | -7477.134594 | 13059.81616 |
c) Selling Price vs Bathrooms -
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.16798841 | |||||
R Square | 0.028220106 | |||||
Adjusted R Square | -0.025767666 | |||||
Standard Error | 14544.23932 | |||||
Observations | 20 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 110572023.8 | 110572023.8 | 0.52271292 | 0.478976724 | |
Residual | 18 | 3807628151 | 211534897.3 | |||
Total | 19 | 3918200175 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 141380.119 | 12495.31514 | 11.31465013 | 1.29283E-09 | 115128.4361 | 167631.802 |
Bathrooms(X) | -2565.47619 | 3548.431052 | -0.722988879 | 0.478976724 | -10020.4532 | 4889.500816 |
Now note that the R-square value is less for all the other variables compared to Appraised Value. So, no other variable has stronger relationship with selling price than appraised value.
_____________________________
3)
The multiple regression model is as shown-
Thus, Selling price = -24463.40151 + 19.15206369(Square Feet) - 3921.481386(Bedrooms) + 382.3097127(Bathrooms) + 1.012288684(Appraised Value)
--------------
5) R-squared value is 0.8163.
So 81.63% variability is explained.