Question

In: Statistics and Probability

A random sample of 81 items is selected from a population of size 350. What is...

A random sample of 81 items is selected from a population of size 350. What is the probability that the sample mean will exceed 205 if the population mean is 200 and the population standard deviation equals 25​? ​(Hint: Use the finite population correction factor since the sample size is more than​ 5% of the population​ size.)

Solutions

Expert Solution

Answer:-

Given That:-

A random sample of 81 items is selected from a population of size 350. What is the probability that the sample mean will exceed 205 if the population mean is 200 and the population standard deviation equals 25​?​(Hint: Use the finite population correction factor since the sample size is more than​ 5% of the population​size.)

A random sample of 81 items is selected from a population of size 350. the probability that the sample mean will exceed 205 if the population mean is 200 and the population standard deviation equals 25

we have a random sample size is 81, i.e., n = 81

population size is 350 i.e., N = 350

population mean is 200 i.e., = 200

population standard deviation is 25 i.e., b = 25

we want to find

  

   

  

  

Note that is sample mean.


Related Solutions

A simple random sample of 81 is selected from a population with a standard deviation of...
A simple random sample of 81 is selected from a population with a standard deviation of 17. The degree of confidence is 90%. What is the margin of error for the mean?
Thirty-three items are randomly selected from a population of 350 items. The sample mean is 32,...
Thirty-three items are randomly selected from a population of 350 items. The sample mean is 32, and the sample standard deviation 6. Develop a 90% confidence interval for the population mean. (Round the t-value to 3 decimal places. Round the final answers to 2 decimal places.)   The confidence interval is between  and
Suppose that a random sample of size 64 is to be selected from a population with...
Suppose that a random sample of size 64 is to be selected from a population with mean 40 and standard deviation 5. (a) What are the mean and standard deviation of the x sampling distribution? μx = 1 40 Correct: Your answer is correct. σx = 2 .625 Correct: Your answer is correct. (b) What is the approximate probability that x will be within 0.2 of the population mean μ? (Round your answer to four decimal places.) P = 3...
Suppose that a random sample of size 64 is to be selected from a population with...
Suppose that a random sample of size 64 is to be selected from a population with mean 40 and standard deviation 5. a) What is the approximate probability that x will differ from μ by more than 0.8? (Round your answer to four decimal places.)
1. Suppose that a random sample of size 64 is to be selected from a population...
1. Suppose that a random sample of size 64 is to be selected from a population with mean 40 and standard deviation 5. a. What is the mean of the ¯xx¯ sampling distribution? b. What is the standard deviation of the ¯xx¯ sampling distribution? c. What is the approximate probability that ¯xx¯ will be within 0.5 of the population mean μμ? d. What is the approximate probability that ¯xx¯ will differ from μμ by more than 0.7? 2. A Food...
A random sample of size n1 = 16 is selected from a normal population with a...
A random sample of size n1 = 16 is selected from a normal population with a mean of 74 and a standard deviation of 9. A second random sample of size n2 = 7 is taken from another normal population with mean 68 and standard deviation 11. Let X1and X2 be the two sample means. Find: (a) The probability that X1-X2 exceeds 4. (b) The probability that 4.8 ≤X1-X2≤ 5.6. Round your answers to two decimal places (e.g. 98.76).
A random sample of size n = 40 is selected from a population that has a...
A random sample of size n = 40 is selected from a population that has a proportion of successes p = 0.8. 1) Determine the mean proportion of the sampling distribution of the sample proportion. 2) Determine the standard deviation of the sampling distribution of the sample proportion, to 3 decimal places. 3) True or False? The sampling distribution of the sample proportion is approximately normal.
A random sample of size n1 = 14 is selected from a normal population with a...
A random sample of size n1 = 14 is selected from a normal population with a mean of 74 and a standard deviation of 6. A second random sample of size n2 = 9 is taken from another normal population with mean 70 and standard deviation 14. Let X¯1and X¯2 be the two sample means. Find: (a) The probability that X¯1-X¯2 exceeds 3. (b) The probability that 4.4 ≤X¯1-X¯2≤ 5.4.
A random sample of size 40 is selected from a population with the mean of 482...
A random sample of size 40 is selected from a population with the mean of 482 and standard deviation of 18. This sample of 40 has a mean, which belongs to a sampling distribution. a) Determine the shape of the sampling distribution b) Find the mean and standard error of the sampling distribution c) Find the probability that the sample mean will be between 475 and 495? d) Find the probability that the sample mean will have a value less...
a random sample size of 100 is selected from a population with P equals 40
a random sample size of 100 is selected from a population with P equals 40
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT