In: Statistics and Probability
Suppose x is a normally distributed random variable with
muμequals=3434
and
sigmaσequals=44.
Find a value
x 0x0
of the random variable x.
a.
P(xgreater than or equals≥x 0x0)equals=.5
b.
P(xless than<x 0x0)equals=.025
c.
P(xgreater than>x 0x0)equals=.10
d.
P(xgreater than>x 0x0)equals=.95
Solution:-
Given that,
mean = = 34
standard deviation = = 4
a) Using standard normal table,
P(Z z) = 0.5
= 1 - P(Z z) = 0.5
= P(Z z) = 1 - 0.5
= P(Z z ) = 0.5
= P(Z 0) = 0.5
z = 0
Using z-score formula,
x0 = z * +
x0 = 0 * 4 + 34
x0 = 34
b) Using standard normal table,
P(Z < z) = 0.025
= P(Z < z) = 0.025
= P(Z < -1.96 ) = 0.025
z = -1.96
Using z-score formula,
x0 = z * +
x0 = -1.96 * 4 + 34
x0 = 26.16
c) Using standard normal table,
P(Z > z) = 0.10
= 1 - P(Z < z) = 0.10
= P(Z < z) = 1 - 0.10
= P(Z < z ) = 0.90
= P(Z < 1.28 ) = 0.90
z = 1.28
Using z-score formula,
x0 = z * +
x0 = 1.28 * 4 + 34
x0 = 39.12
d) Using standard normal table,
P(Z > z) = 0.95
= 1 - P(Z < z) = 0.95
= P(Z < z) = 1 - 0.95
= P(Z < z ) = 0.05
= P(Z < -1.65 ) = 0.05
z = -1.65
Using z-score formula,
x0 = z * +
x0 = -1.65* 4 + 34
x0 = 27.40