In: Computer Science
Please if you are able to answer the question below:
Write C++ program using native C++ (you can use STL) that produces Huffman code for a string of text entered by the user. Must accept all ASCII characters. Pleas explain how you got frequencies of characters, how you sorted them, how you got codes.
Character | ASCII Value | ASCII Binary | Huffman Binary |
---|---|---|---|
' ' |
32 |
00100000 |
10 |
'a' |
97 |
01100001 |
0001 |
'b' |
98 |
01100010 |
0111010 |
'c' |
99 |
01100011 |
001100 |
'e' |
101 |
01100101 |
1100 |
'z' |
122 |
01111010 |
00100011010 |
#include <bits/stdc++.h>
#include <stdlib.h>
// This constant can be avoided by explicitly
// calculating height of Huffman Tree
#define MAX_TREE_HT 100
// A Huffman tree node
struct
MinHeapNode {
// One of the input
characters
char
data;
// Frequency of the
character
unsigned
freq;
// Left and right
child of this node
struct
MinHeapNode *left, *right;
};
// A Min Heap: Collection of
// min-heap (or Huffman tree) nodes
struct
MinHeap {
// Current size of
min heap
unsigned
size;
// capacity of min
heap
unsigned
capacity;
// Array of minheap
node pointers
struct
MinHeapNode** array;
};
// A utility function allocate a new
// min heap node with given character
// and frequency of the character
struct
MinHeapNode*
newNode(
char
data, unsigned
freq)
{
struct
MinHeapNode* temp
=
(
struct
MinHeapNode*)
malloc
(
sizeof
(
struct
MinHeapNode));
temp->left =
temp->right = NULL;
temp->data =
data;
temp->freq =
freq;
return
temp;
}
// A utility function to create
// a min heap of given capacity
struct
MinHeap* createMinHeap(unsigned
capacity)
{
struct
MinHeap* minHeap
=
(
struct
MinHeap*)
malloc
(
sizeof
(
struct
MinHeap));
// current size is
0
minHeap->size =
0;
minHeap->capacity
= capacity;
minHeap->array
=
(
struct
MinHeapNode**)
malloc
(minHeap->
capacity *
sizeof
(
struct
MinHeapNode*));
return
minHeap;
}
// A utility function to
// swap two min heap nodes
void
swapMinHeapNode(
struct
MinHeapNode** a,
struct
MinHeapNode** b)
{
struct
MinHeapNode* t = *a;
*a = *b;
*b = t;
}
// The standard minHeapify function.
void
minHeapify(
struct
MinHeap* minHeap,
int
idx)
{
int
smallest = idx;
int
left
= 2 * idx + 1;
int
right = 2 * idx + 2;
if
(left
< minHeap->size &&
minHeap->array[left]->
freq < minHeap->array[smallest]->freq)
smallest
= left;
if
(right < minHeap->size &&
minHeap->array[right]->
freq < minHeap->array[smallest]->freq)
smallest
= right;
if
(smallest != idx) {
swapMinHeapNode(&minHeap->array[smallest],
&minHeap->array[idx]);
minHeapify(minHeap,
smallest);
}
}
// A utility function to check
// if size of heap is 1 or not
int
isSizeOne(
struct
MinHeap* minHeap)
{
return
(minHeap->size == 1);
}
// A standard function to extract
// minimum value node from heap
struct
MinHeapNode*
extractMin(
struct
MinHeap*
minHeap)
{
struct
MinHeapNode* temp = minHeap->array[0];
minHeap->array[0]
=
minHeap->array[minHeap->size - 1];
--minHeap->size;
minHeapify(minHeap,
0);
return
temp;
}
// A utility function to insert
// a new node to Min Heap
void
insertMinHeap(
struct
MinHeap* minHeap,
struct
MinHeapNode* minHeapNode)
{
++minHeap->size;
int
i =
minHeap->size - 1;
while
(i
&& minHeapNode->freq < minHeap->array[(i - 1) /
2]->freq) {
minHeap->array[i]
= minHeap->array[(i - 1) / 2];
i
= (i - 1) / 2;
}
minHeap->array[i]
= minHeapNode;
}
// A standard function to build min heap
void
buildMinHeap(
struct
MinHeap* minHeap)
{
int
n =
minHeap->size - 1;
int
i;
for
(i =
(n - 1) / 2; i >= 0; --i)
minHeapify(minHeap,
i);
}
// A utility function to print an array of size
n
void
printArr(
int
arr[],
int
n)
{
int
i;
for
(i =
0; i < n; ++i)
printf
(
"%d"
,
arr[i]);
printf
(
"\n"
);
}
// Utility function to check if this node is
leaf
int
isLeaf(
struct
MinHeapNode* root)
{
return
!(root->left) && !(root->right);
}
// Creates a min heap of capacity
// equal to size and inserts all character of
// data[] in min heap. Initially size of
// min heap is equal to capacity
struct
MinHeap*
createAndBuildMinHeap(
char
data[],
int
freq[],
int
size)
{
struct
MinHeap* minHeap = createMinHeap(size);
for
(
int
i = 0; i < size;
++i)
minHeap->array[i]
= newNode(data[i], freq[i]);
minHeap->size =
size;
buildMinHeap(minHeap);
return
minHeap;
}
// The main function that builds Huffman tree
struct
MinHeapNode*
buildHuffmanTree(
char
data[],
int
freq[],
int
size)
{
struct
MinHeapNode *left, *right, *top;
// Step 1: Create a
min heap of capacity
// equal to size.
Initially, there are
// modes equal to
size.
struct
MinHeap* minHeap = createAndBuildMinHeap(data, freq,
size);
// Iterate while size
of heap doesn't become 1
while
(!isSizeOne(minHeap)) {
//
Step 2: Extract the two minimum
//
freq items from min heap
left
= extractMin(minHeap);
right
= extractMin(minHeap);
//
Step 3: Create a new internal
//
node with frequency equal to the
//
sum of the two nodes frequencies.
//
Make the two extracted node as
//
left and right children of this new node.
//
Add this node to the min heap
//
'$' is a special value for internal nodes, not used
top
= newNode(
'$'
, left->freq +
right->freq);
top->left
= left;
top->right
= right;
insertMinHeap(minHeap,
top);
}
// Step 4: The
remaining node is the
// root node and the
tree is complete.
return
extractMin(minHeap);
}
// Prints huffman codes from the root of Huffman
Tree.
// It uses arr[] to store codes
void
printCodes(
struct
MinHeapNode* root,
int
arr[],
int
top)
{
// Assign 0 to left
edge and recur
if
(root->left) {
arr[top]
= 0;
printCodes(root->left,
arr, top + 1);
}
// Assign 1 to right
edge and recur
if
(root->right) {
arr[top]
= 1;
printCodes(root->right,
arr, top + 1);
}
// If this is a leaf
node, then
// it contains one of
the input
// characters, print
the character
// and its code from
arr[]
if
(isLeaf(root)) {
printf
(
"%c:
"
, root->data);
printArr(arr,
top);
}
}
// The main function that builds a
// Huffman Tree and print codes by traversing
// the built Huffman Tree
void
HuffmanCodes(
char
data[],
int
freq[],
int
size)
{
// Construct Huffman
Tree
struct
MinHeapNode* root
=
buildHuffmanTree(data, freq, size);
// Print Huffman
codes using
// the Huffman tree
built above
int
arr[MAX_TREE_HT], top = 0;
printCodes(root, arr,
top);
}
// Driver program to test above functions
int
main()
{
char
arr[] = {
'a'
,
'b'
,
'c'
,
'd'
,
'e'
,
'f'
};
int
freq[] = { 5, 9, 12, 13, 16, 45 };
int
size
=
sizeof
(arr) /
sizeof
(arr[0]);
HuffmanCodes(arr,
freq, size);
return
0;
}