Question

In: Statistics and Probability

In a recent year, Delaware had the highest per capita annual income with $51,803. Assume that...

In a recent year, Delaware had the highest per capita annual income with $51,803. Assume that σ = $4,850. A random sample of 39 state residents were selected.

What is the distribution of the sample mean income?

What is the probability that the sample mean income is greater than $50,800?

Solutions

Expert Solution

Solution :

Given that ,

mean = = 51803

standard deviation = = 4850

n = 39

1)

= = 51803 and

= / n = 4850/ 39 = 776.6215

2)

P( > 50800) = 1 - P( < 50800)

= 1 - P(( - ) / < (50800 - 51803) / 776.6215)

= 1 - P(z < -1.29)

= 1 - 0.0985 Using standard normal table.

= 0.9015

Probability = 0.9015


Related Solutions

In a recent year, Delaware had the highest per capita annual income with $51,803. If the...
In a recent year, Delaware had the highest per capita annual income with $51,803. If the standard deviation is $4850, answer the following questions: Assume that the sample is taken from a large population what is the mean and standard deviation of the sampling distribution of 16 individuals? Round calculations to four places. A. 51,803 and 4,850 B. 51,803 and 303.1250 C. 3,237.69 and 4,850 D. 51,.803 and 1,212.5
The annual per capita consumption of bottled water was 32.6 gallons. Assume that the per capita...
The annual per capita consumption of bottled water was 32.6 gallons. Assume that the per capita consumption of bottled water is approximately normally distributed with a mean of 32.6 and a standard deviation of 10 gallons. a. What is the probability that someone consumed more than 43 gallons of bottled water? b. What is the probability that someone consumed between 30 and 40 gallons of bottled water? c. What is the probability that someone consumed less than 30 gallons of bottled water? d. 90%...
The annual per capita consumption of bottled water was 32.8 gallons. Assume that the per capita...
The annual per capita consumption of bottled water was 32.8 gallons. Assume that the per capita consumption of bottled water is approximately normally distributed with a mean of 32.8 and a standard deviation of 10 gallons. a. What is the probability that someone consumed more than 43 gallons of bottled​ water? b. What is the probability that someone consumed between 30 and 40 gallons of bottled​ water? c. What is the probability that someone consumed less than 30 gallons of...
The annual per capita consumption of bottled water was 30.5 gallons. Assume that the per capita...
The annual per capita consumption of bottled water was 30.5 gallons. Assume that the per capita consumption of bottled water is approximately normally distributed with a mean of 30.5 and a standard deviation of 10 gallons. a. What is the probability that someone consumed more than 31 gallons of bottled​ water? b. What is the probability that someone consumed between 20 and 30 gallons of bottled​ water? c. What is the probability that someone consumed less than 20 gallons of...
The annual per capita consumption of bottled water was 31.2 gallons. Assume that the per capita...
The annual per capita consumption of bottled water was 31.2 gallons. Assume that the per capita consumption of bottled water is approximately normally distributed with a mean of 31.2 and a standard deviation of 12 gallons. a. What is the probability that someone consumed more than 36 gallons of bottled​ water? b. What is the probability that someone consumed between 25 and 35 gallons of bottled​ water? c. What is the probability that someone consumed less than 25 gallons of...
The annual per capita consumption of bottled water was 34.334.3 gallons. Assume that the per capita...
The annual per capita consumption of bottled water was 34.334.3 gallons. Assume that the per capita consumption of bottled water is approximately normally distributed with a mean of 34.334.3 and a standard deviation of 1212 gallons. a. What is the probability that someone consumed more than 4444 gallons of bottled​ water? b. What is the probability that someone consumed between 3030 and 4040 gallons of bottled​ water? c. What is the probability that someone consumed less than 3030 gallons of...
The annual per capita consumption of bottled water was 32.7 gallons. Assume that the per capita...
The annual per capita consumption of bottled water was 32.7 gallons. Assume that the per capita consumption of bottled water is approximately normally distributed with a mean of 32.7 and a standard deviation of 10 gallons. a. What is the probability that someone consumed more than 33 gallons of bottled​ water? b. What is the probability that someone consumed between 20 and 30 gallons of bottled​ water? c. What is the probability that someone consumed less than 20 gallons of...
The annual per capita consumption of bottled water was 32.8 gallons. Assume that the per capita...
The annual per capita consumption of bottled water was 32.8 gallons. Assume that the per capita consumption of bottled water is approximately normally distributed with a mean of 32.8 and a standard deviation of 11 gallons. A. What is the probability that someone consumed more than 43 gallons of bottled​water? B. What is the probability that someone consumed between 20 and 30 gallons of bottled​ water? C. What is the probability that someone consumed less than 20 gallons of bottled​water?...
The annual per capita consumption of bottled water was 34.7 gallons. Assume that the per capita...
The annual per capita consumption of bottled water was 34.7 gallons. Assume that the per capita consumption of bottled water is approximately normally distributed with a mean of 34.7 and a standard deviation of 10 gallons. a. What is the probability that someone consumed more than 45 gallons of bottled​ water? b. What is the probability that someone consumed between 25 and 35 gallons of bottled​ water? c. What is the probability that someone consumed less than 25 gallons of...
The annual per capita consumption of bottled water was 32.7 gallons. Assume that the per capita...
The annual per capita consumption of bottled water was 32.7 gallons. Assume that the per capita consumption of bottled water is approximately normally distributed with a mean of 32.7 and a standard deviation of 13 gallons. a. What is the probability that someone consumed more than 43 gallons of bottled​ water? b. What is the probability that someone consumed between 25 and 35 gallons of bottled​ water? c. What is the probability that someone consumed less than 25 gallons of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT