In: Statistics and Probability
The Aluminum Association reports that the average American uses
56.8 pounds of aluminum in a year. A random sample of 50 households
is monitored for one year to determine aluminum usage. If the
population standard deviation of annual usage is 12.4 pounds, what
is the probability that the sample mean will be each of the
following?
Appendix A Statistical Tables
a. More than 58 pounds
b. More than 57 pounds
c. Between 55 and 57 pounds
d. Less than 53 pounds
e. Less than 49 pounds
(Round the values of z to 2 decimal places. Round your answers to 4 decimal places.)
a)
Given, = 56.8 , = 12.4
Standardizing the value
P( < x) = P(Z < (x - )/ ( / sqrt(n) )
So,
P( > 58) = P(Z > ( 58 - 56.8) / ( 12.4 / sqrt(50) )
= P(Z > 0.68)
= 0.2483
b)
Given, = 56.8 , = 12.4
Standardizing the value
P( < x) = P(Z < (x - )/ ( / sqrt(n) )
So,
P( > 57) = P(Z > ( 57 - 56.8) / ( 12.4 / sqrt(50) )
= P(Z > 0.11)
= 0.4562
c)
P(55 < < 57) = P(Z < ( 57 - 56.8) / ( 12.4 / sqrt(50) ) - P(Z < ( 55 - 56.8) / ( 12.4 / sqrt(50) )
= P(Z < 0.11) - P( Z < -1.03)
= 0.5438 - 0.1515
= 0.3823
d)
P( < 53) = P(Z < ( 53 - 56.8) / ( 12.4 / sqrt(50) )
= P(Z < -2.17)
= 0.015
e)
P( < 49 ) = P(Z > ( 49 - 56.8) / ( 12.4 / sqrt(50) )
= P(Z -4.45)
= 0