In: Finance
| Value of $300 withdrawn every year for 12 years (at t=18 years) | = | Present value of annuity | ||||||||||
| Present Value of annuity | = | P[{1-(1+r)^-n}/r] | ||||||||||
| where P | = | monthly withdrawl = $300 | ||||||||||
| t | = | 12 years*12 months =144 | ||||||||||
| r | = | 4.1%/12=0.3417% or 0.003417 | ||||||||||
| PV of annuity | = | $300[{1-(1+0.003417)^-144}/0.003417] | ||||||||||
| = | $300[{1-0.6119}/0.003417] | |||||||||||
| = | $300[0.3811/0.003417] | |||||||||||
| = | $300*113.5833 | |||||||||||
| = | $ 34,075.0 | |||||||||||
| The future value of annuity of monthly payment at t=18yrs | = | Present value of annuity of $300 at t=18 | ||||||||||
| Future value of annuity | = | P[{(1+r)^n}-1]/r | ||||||||||
| where P | = | Monthly payment | ||||||||||
| t | = | 18yrs812 months=216 | ||||||||||
| r | = | 4.1%/12=0.3417% or 0.003417 | ||||||||||
| therefore | ||||||||||||
| $34,075 | = | P[{(1+0.003417)^216}-1]/0.003417 | ||||||||||
| $34,075 | = | P[{(1.003417)^216}-1]/0.003417 | ||||||||||
| $34,075 | = | P{2.089268-1}/0.003417 | ||||||||||
| $34,075 | = | P*318.7791 | ||||||||||
| $34075/318.7791 | = | P | ||||||||||
| $106.89 | = | P | ||||||||||
| Monthly payment to be deposited today =$106.89 | ||||||||||||
| There may be little difference due to decimal places.Please do not downvote on that basis | ||||||||||||
| If you have any doubt,please ask | ||||||||||||
| Please upvote the answer | ||||||||||||