In: Finance
Value of $300 withdrawn every year for 12 years (at t=18 years) | = | Present value of annuity | ||||||||||
Present Value of annuity | = | P[{1-(1+r)^-n}/r] | ||||||||||
where P | = | monthly withdrawl = $300 | ||||||||||
t | = | 12 years*12 months =144 | ||||||||||
r | = | 4.1%/12=0.3417% or 0.003417 | ||||||||||
PV of annuity | = | $300[{1-(1+0.003417)^-144}/0.003417] | ||||||||||
= | $300[{1-0.6119}/0.003417] | |||||||||||
= | $300[0.3811/0.003417] | |||||||||||
= | $300*113.5833 | |||||||||||
= | $ 34,075.0 | |||||||||||
The future value of annuity of monthly payment at t=18yrs | = | Present value of annuity of $300 at t=18 | ||||||||||
Future value of annuity | = | P[{(1+r)^n}-1]/r | ||||||||||
where P | = | Monthly payment | ||||||||||
t | = | 18yrs812 months=216 | ||||||||||
r | = | 4.1%/12=0.3417% or 0.003417 | ||||||||||
therefore | ||||||||||||
$34,075 | = | P[{(1+0.003417)^216}-1]/0.003417 | ||||||||||
$34,075 | = | P[{(1.003417)^216}-1]/0.003417 | ||||||||||
$34,075 | = | P{2.089268-1}/0.003417 | ||||||||||
$34,075 | = | P*318.7791 | ||||||||||
$34075/318.7791 | = | P | ||||||||||
$106.89 | = | P | ||||||||||
Monthly payment to be deposited today =$106.89 | ||||||||||||
There may be little difference due to decimal places.Please do not downvote on that basis | ||||||||||||
If you have any doubt,please ask | ||||||||||||
Please upvote the answer |