In: Statistics and Probability
Hours studied, x |
11 |
10 |
15 |
10 |
6 |
12 |
9 |
10 |
Blood pressure, y |
129 |
130 |
130 |
134 |
129 |
131 |
127 |
128 |
Trying to improve the techniques I use in the classroom and reduce the anxiety of the students, I decided to try an experiment. I decided that I would incorporate more relaxation techniques prior to exams. For a comparison, I subjected the students to twice the exams (evil, I know). In essence, I did a pre- and post-test. The scores are below. At α = 0.05, can it be concluded that the relaxation techniques helped improve test scores?
No relax |
85 |
72 |
91 |
56 |
80 |
94 |
82 |
78 |
68 |
Relax |
87 |
70 |
92 |
68 |
79 |
93 |
86 |
72 |
70 |
1)
x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) |
11 | 129 | 0.39 | 0.56 | -0.47 |
10 | 130 | 0.14 | 0.06 | -0.09 |
15 | 130 | 21.39 | 0.06 | 1.16 |
10 | 134 | 0.14 | 18.06 | -1.59 |
6 | 129 | 19.14 | 0.56 | 3.28 |
12 | 131 | 2.64 | 1.56 | 2.03 |
9 | 127 | 1.89 | 7.56250 | 3.7813 |
10 | 128 | 0.14 | 3.06250 | 0.656 |
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 83.00 | 1038.00 | 45.88 | 31.50 | 8.8 |
mean | 10.38 | 129.75 | SSxx | SSyy | SSxy |
sample size , n = 8
here, x̅ = Σx / n= 10.375 ,
ȳ = Σy/n =
129.750
SSxx = Σ(x-x̅)² = 45.8750
SSxy= Σ(x-x̅)(y-ȳ) = 8.8
estimated slope , ß1 = SSxy/SSxx = 8.8
/ 45.875 = 0.19074
intercept, ß0 = y̅-ß1* x̄ =
127.77112
so, regression line is Ŷ =
127.771 + 0.191
*x
Ho: ß1= 0
H1: ß1╪ 0
n= 8
alpha = 0.05
estimated std error of slope =Se(ß1) = Se/√Sxx =
2.230 /√ 45.88 =
0.3292
t stat = estimated slope/std error =ß1 /Se(ß1) =
0.1907 / 0.3292 =
0.5794
t-critical value= 2.4469 [excel function:
=T.INV.2T(α,df) ]
Degree of freedom ,df = n-2= 6
p-value = 0.583417
decison : p-value>α , do not reject Ho
Conclusion: do not Reject Ho and conclude that
linear relations does not exists between X and y
=================
2)
let µd = µpre - µ post
Ho : µd= 0
Ha : µd < 0
SAMPLE 1 | SAMPLE 2 | difference , Di =sample1-sample2 | (Di - Dbar)² |
85 | 87 | -2.000 | 0.605 |
72 | 70 | 2.000 | 10.383 |
91 | 92 | -1.000 | 0.049 |
56 | 68 | -12.000 | 116.160 |
80 | 79 | 1.000 | 4.938 |
94 | 93 | 1.000 | 4.938 |
82 | 86 | -4.000 | 7.716 |
78 | 72 | 6.000 | 52.160 |
68 | 70 | -2.000 | 0.605 |
sample 1 | sample 2 | Di | (Di - Dbar)² | |
sum = | 706 | 717.00 | -11.000 | 197.556 |
mean of difference , D̅ =ΣDi / n =
-1.222
std dev of difference , Sd = √ [ (Di-Dbar)²/(n-1) =
4.9694
std error , SE = Sd / √n = 4.9694 /
√ 9 = 1.6565
t-statistic = (D̅ - µd)/SE = ( -1.222222222
- 0 ) / 1.6565
= -0.7379
Degree of freedom, DF= n - 1 =
8
p-value = 0.2408 [excel
function: =t.dist(t-stat,df) ]
Decision: p-value>α , Do not reject null
hypothesis
conclusion: it cannot be concluded that the
relaxation techniques helped improve test scores