In: Statistics and Probability
| 
 Hours studied, x  | 
 11  | 
 10  | 
 15  | 
 10  | 
 6  | 
 12  | 
 9  | 
 10  | 
| 
 Blood pressure, y  | 
 129  | 
 130  | 
 130  | 
 134  | 
 129  | 
 131  | 
 127  | 
 128  | 
Trying to improve the techniques I use in the classroom and reduce the anxiety of the students, I decided to try an experiment. I decided that I would incorporate more relaxation techniques prior to exams. For a comparison, I subjected the students to twice the exams (evil, I know). In essence, I did a pre- and post-test. The scores are below. At α = 0.05, can it be concluded that the relaxation techniques helped improve test scores?
| 
 No relax  | 
 85  | 
 72  | 
 91  | 
 56  | 
 80  | 
 94  | 
 82  | 
 78  | 
 68  | 
| 
 Relax  | 
 87  | 
 70  | 
 92  | 
 68  | 
 79  | 
 93  | 
 86  | 
 72  | 
 70  | 
1)
| x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) | 
| 11 | 129 | 0.39 | 0.56 | -0.47 | 
| 10 | 130 | 0.14 | 0.06 | -0.09 | 
| 15 | 130 | 21.39 | 0.06 | 1.16 | 
| 10 | 134 | 0.14 | 18.06 | -1.59 | 
| 6 | 129 | 19.14 | 0.56 | 3.28 | 
| 12 | 131 | 2.64 | 1.56 | 2.03 | 
| 9 | 127 | 1.89 | 7.56250 | 3.7813 | 
| 10 | 128 | 0.14 | 3.06250 | 0.656 | 
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 83.00 | 1038.00 | 45.88 | 31.50 | 8.8 | 
| mean | 10.38 | 129.75 | SSxx | SSyy | SSxy | 
sample size ,   n =   8  
       
here, x̅ = Σx / n=   10.375   ,
    ȳ = Σy/n =  
129.750  
          
       
SSxx =    Σ(x-x̅)² =    45.8750  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   8.8  
       
          
       
estimated slope , ß1 = SSxy/SSxx =   8.8  
/   45.875   =   0.19074
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
127.77112          
          
       
so, regression line is   Ŷ =  
127.771   +   0.191  
*x
Ho:   ß1=   0      
   
H1:   ß1╪   0      
   
n=   8          
   
alpha =   0.05      
       
estimated std error of slope =Se(ß1) = Se/√Sxx =   
2.230   /√   45.88   =  
0.3292
          
       
t stat = estimated slope/std error =ß1 /Se(ß1) =   
0.1907   /   0.3292   =  
0.5794
          
       
t-critical value=    2.4469   [excel function:
=T.INV.2T(α,df) ]      
   
Degree of freedom ,df = n-2=   6  
           
p-value =    0.583417      
       
decison :    p-value>α , do not reject Ho  
           
Conclusion:   do not Reject Ho and conclude that
linear relations does not exists between X and y
=================
2)
let µd = µpre - µ post
Ho :   µd=   0
Ha :   µd <   0
      
| SAMPLE 1 | SAMPLE 2 | difference , Di =sample1-sample2 | (Di - Dbar)² | 
| 85 | 87 | -2.000 | 0.605 | 
| 72 | 70 | 2.000 | 10.383 | 
| 91 | 92 | -1.000 | 0.049 | 
| 56 | 68 | -12.000 | 116.160 | 
| 80 | 79 | 1.000 | 4.938 | 
| 94 | 93 | 1.000 | 4.938 | 
| 82 | 86 | -4.000 | 7.716 | 
| 78 | 72 | 6.000 | 52.160 | 
| 68 | 70 | -2.000 | 0.605 | 
| sample 1 | sample 2 | Di | (Di - Dbar)² | |
| sum = | 706 | 717.00 | -11.000 | 197.556 | 
mean of difference ,    D̅ =ΣDi / n =  
-1.222          
       
          
           
   
std dev of difference , Sd =    √ [ (Di-Dbar)²/(n-1) =
   4.9694      
           
          
           
   
std error , SE = Sd / √n =    4.9694   /
√   9   =   1.6565  
   
          
           
   
t-statistic = (D̅ - µd)/SE = (   -1.222222222  
-   0   ) /    1.6565  
=   -0.7379
          
           
   
Degree of freedom, DF=   n - 1 =   
8          
       
  
p-value =        0.2408   [excel
function: =t.dist(t-stat,df) ]      
       
Decision:   p-value>α , Do not reject null
hypothesis          
           
conclusion:  it cannot be concluded that the
relaxation techniques helped improve test scores