In: Finance
1) Statement showing NPV
Year | Cash flow | PVIF @ 10% | PV |
0 | -8000 | 1.0000 | -8000.00 |
1 | 4100 | 0.9091 | 3727.27 |
2 | 3600 | 0.8264 | 2975.21 |
3 | 4700 | 0.7513 | 3531.18 |
NPV = sum of PV | 2233.66 |
Thus NPV = 2233.66$
2) Statement showing FV of +ve cash flow
Year | Cash flow | FVIF @ 10% | FV |
1 | 4100 | 1.21 | 4961 |
2 | 3600 | 1.1 | 3960 |
3 | 4700 | 1 | 4700 |
FV of +ve cash flow | 13621 |
MIRR = (FV of +ve cash flow/ PV of -ve cash flow)^1/n - 1
=(13621/8000)^1/3 - 1
=1.702625^0.3333 - 1
=1.1941-1
=0.1941
i.e 19.41%
3) Statement showing Payback period
Year | Cash flow | Cummulative cash flow |
1 | 4100 | 4100 |
2 | 3600 | 7700 |
3 | 4700 | 12400 |
Now we can use interpolation to find discounted payback period
Year | Cummulative cash flow |
2 | 7700.00 |
3 | 12400.00 |
1 | 4700.00 |
? | 300.00 |
= 300/4700
=0.06
Thus payback period = 2+0.06 = 2.06 years
4) Statement showing Discounted Payback period
Year | Cash flow | PVIF @ 10% | PV | Cummulative cash flow |
1 | 4100 | 0.9091 | 3727.27 | 3727.27 |
2 | 3600 | 0.8264 | 2975.21 | 6702.48 |
3 | 4700 | 0.7513 | 3531.18 | 10233.66 |
Now we can use interpolation to find discounted payback period
Year | Cummulative cash flow |
2 | 6702.48 |
3 | 10233.66 |
1 | 3531.18 |
? | 1297.52 |
=1297.52/3531.18
=0.3674
Thus discounted payback period = 2+0.3674 = 2.37 years