In: Finance
1) Statement showing NPV
| Year | Cash flow | PVIF @ 10% | PV | 
| 0 | -8000 | 1.0000 | -8000.00 | 
| 1 | 4100 | 0.9091 | 3727.27 | 
| 2 | 3600 | 0.8264 | 2975.21 | 
| 3 | 4700 | 0.7513 | 3531.18 | 
| NPV = sum of PV | 2233.66 | 
Thus NPV = 2233.66$
2) Statement showing FV of +ve cash flow
| Year | Cash flow | FVIF @ 10% | FV | 
| 1 | 4100 | 1.21 | 4961 | 
| 2 | 3600 | 1.1 | 3960 | 
| 3 | 4700 | 1 | 4700 | 
| FV of +ve cash flow | 13621 | 
MIRR = (FV of +ve cash flow/ PV of -ve cash flow)^1/n - 1
=(13621/8000)^1/3 - 1
=1.702625^0.3333 - 1
=1.1941-1
=0.1941
i.e 19.41%
3) Statement showing Payback period
| Year | Cash flow | Cummulative cash flow | 
| 1 | 4100 | 4100 | 
| 2 | 3600 | 7700 | 
| 3 | 4700 | 12400 | 
Now we can use interpolation to find discounted payback period
| Year | Cummulative cash flow | 
| 2 | 7700.00 | 
| 3 | 12400.00 | 
| 1 | 4700.00 | 
| ? | 300.00 | 
= 300/4700
=0.06
Thus payback period = 2+0.06 = 2.06 years
4) Statement showing Discounted Payback period
| Year | Cash flow | PVIF @ 10% | PV | Cummulative cash flow | 
| 1 | 4100 | 0.9091 | 3727.27 | 3727.27 | 
| 2 | 3600 | 0.8264 | 2975.21 | 6702.48 | 
| 3 | 4700 | 0.7513 | 3531.18 | 10233.66 | 
Now we can use interpolation to find discounted payback period
| Year | Cummulative cash flow | 
| 2 | 6702.48 | 
| 3 | 10233.66 | 
| 1 | 3531.18 | 
| ? | 1297.52 | 
=1297.52/3531.18
=0.3674
Thus discounted payback period = 2+0.3674 = 2.37 years