In: Finance
Smax > 50 & Smin < 50
K strike price = 50
Cmax: call option pay-off when stock price is Smax
Cmax = max(Smax - 50,0) = Smax - 50
Cmin: call option pay-off when stock price is Smin
Cmin = max(Smin - 50,0) = 0
First using the concept of hedge ratio
Consider a portfolio with 5/7 long stock and 1 short call:
If stock price increases,
Value of portfolio = 5/7*Smax - Cmax = 5/7*Smax - (Smax - 50) = 50 - 2/7*Smax
If stock price decreases,
Value of portfolio = 5/7*Smin - Cmin = 5/7*Smin - 0 = 5/7*Smin
For a hedged portfolio:
50 - 2/7*Smax = 5/7*Smin
350 = 5*Smin + 2*Smax.........................equ(1)
u: up factor = Smax/50
d: down factor = Smin/50
p: probability of up movement
p = (e^(r*t) - d)/(u - d)
e: natural exponent
r: risk free rate = 7.5%
t: time to maturity = 1
p = (1.078 - Smin/50)/(Smax/50 - Smin/50) = (53.89 - Smin)/(Smax - Smin)
Value of call option = e^(-r*t)*{p*Cmax + (1-p)*Cmin}
9.14 = 0.928*{p*(Smax - 50) + (1 - p)*0}
9.14 = 0.928*{(53.89 - Smin)/(Smax - Smin)}*(Smax - 50)...............equ(2)
Solving equ1 & equ2, we get
Smin = 44.04 & Smax = 64.9