In: Statistics and Probability
In reviewing the data in the Performance Lawn Equipment Database, Elizabeth Burke noticed that defects received from suppliers have decreased (worksheet Defects After Delivery). Upon investigation, she learned that in 2014, PLE experienced some quality problems due to an increasing number of defects in materials received from suppliers. The company instituted an initiative in August 2015 to work with suppliers to reduce these defects, to more closely coordinate deliveries, and to improve materials quality through reengineering supplier production policies. Ms. Burke noted that the program appeared to reverse an increasing trend in defects; she would like to predict what might have happened had the supplier initiative not been implemented and how the number of defects might further be reduced in the near future. Use trendlines and regression analysis to assist her in evaluating the data in this worksheet and to reach useful conclusions. Summarize your work in a formal report with all appropriate results and analyses.
Defects After Delivery | |||||
Defects per million items received from suppliers | |||||
Month | 2014 | 2015 | 2016 | 2017 | 2018 |
January | 812 | 828 | 824 | 682 | 571 |
February | 810 | 832 | 836 | 695 | 575 |
March | 813 | 847 | 818 | 692 | 547 |
April | 823 | 839 | 825 | 686 | 542 |
May | 832 | 832 | 804 | 673 | 532 |
June | 848 | 840 | 812 | 681 | 496 |
July | 837 | 849 | 806 | 696 | 472 |
August | 831 | 857 | 798 | 688 | 460 |
September | 827 | 839 | 804 | 671 | 441 |
October | 838 | 842 | 713 | 645 | 445 |
November | 826 | 828 | 705 | 617 | 438 |
December | 819 | 816 | 686 | 603 | 436 |
The graph is:
Data | Forecasts and Error Analysis | |||||||
Period | Demand (y) | Period(x) | Forecast | Error | Absolute | Squared | Abs Pct Err | |
Period 1 | 812 | 1 | 926.2607 | -114.261 | 114.2607 | 13055.5 | 14.07% | |
Period 2 | 810 | 2 | 919.3705 | -109.37 | 109.3705 | 11961.9 | 13.50% | |
Period 3 | 813 | 3 | 912.4803 | -99.4803 | 99.48027 | 9896.325 | 12.24% | |
Period 4 | 823 | 4 | 905.5901 | -82.5901 | 82.59008 | 6821.121 | 10.04% | |
Period 5 | 832 | 5 | 898.6999 | -66.6999 | 66.69989 | 4448.875 | 08.02% | |
Period 6 | 848 | 6 | 891.8097 | -43.8097 | 43.8097 | 1919.29 | 05.17% | |
Period 7 | 837 | 7 | 884.9195 | -47.9195 | 47.91951 | 2296.279 | 05.73% | |
Period 8 | 831 | 8 | 878.0293 | -47.0293 | 47.02931 | 2211.756 | 05.66% | |
Period 9 | 827 | 9 | 871.1391 | -44.1391 | 44.13912 | 1948.262 | 05.34% | |
Period 10 | 838 | 10 | 864.2489 | -26.2489 | 26.24893 | 689.0063 | 03.13% | |
Period 11 | 826 | 11 | 857.3587 | -31.3587 | 31.35874 | 983.3705 | 03.80% | |
Period 12 | 819 | 12 | 850.4685 | -31.4685 | 31.46855 | 990.2694 | 03.84% | |
Period 13 | 828 | 13 | 843.5784 | -15.5784 | 15.57836 | 242.6851 | 01.88% | |
Period 14 | 832 | 14 | 836.6882 | -4.68816 | 4.688163 | 21.97888 | 00.56% | |
Period 15 | 847 | 15 | 829.798 | 17.20203 | 17.20203 | 295.9098 | 02.03% | |
Period 16 | 839 | 16 | 822.9078 | 16.09222 | 16.09222 | 258.9595 | 01.92% | |
Period 17 | 832 | 17 | 816.0176 | 15.98241 | 15.98241 | 255.4375 | 01.92% | |
Period 18 | 840 | 18 | 809.1274 | 30.8726 | 30.8726 | 953.1176 | 03.68% | |
Period 19 | 849 | 19 | 802.2372 | 46.7628 | 46.7628 | 2186.759 | 05.51% | |
Period 20 | 857 | 20 | 795.347 | 61.65299 | 61.65299 | 3801.091 | 07.19% | |
Period 21 | 839 | 21 | 788.4568 | 50.54318 | 50.54318 | 2554.613 | 06.02% | |
Period 22 | 842 | 22 | 781.5666 | 60.43337 | 60.43337 | 3652.192 | 07.18% | |
Period 23 | 828 | 23 | 774.6764 | 53.32356 | 53.32356 | 2843.402 | 06.44% | |
Period 24 | 816 | 24 | 767.7862 | 48.21375 | 48.21375 | 2324.566 | 05.91% | |
Period 25 | 824 | 25 | 760.8961 | 63.10395 | 63.10395 | 3982.108 | 07.66% | |
Period 26 | 836 | 26 | 754.0059 | 81.99414 | 81.99414 | 6723.039 | 09.81% | |
Period 27 | 818 | 27 | 747.1157 | 70.88433 | 70.88433 | 5024.588 | 08.67% | |
Period 28 | 825 | 28 | 740.2255 | 84.77452 | 84.77452 | 7186.719 | 10.28% | |
Period 29 | 804 | 29 | 733.3353 | 70.66471 | 70.66471 | 4993.502 | 08.79% | |
Period 30 | 812 | 30 | 726.4451 | 85.5549 | 85.5549 | 7319.642 | 10.54% | |
Period 31 | 806 | 31 | 719.5549 | 86.4451 | 86.4451 | 7472.755 | 10.73% | |
Period 32 | 798 | 32 | 712.6647 | 85.33529 | 85.33529 | 7282.111 | 10.69% | |
Period 33 | 804 | 33 | 705.7745 | 98.22548 | 98.22548 | 9648.245 | 12.22% | |
Period 34 | 713 | 34 | 698.8843 | 14.11567 | 14.11567 | 199.2522 | 01.98% | |
Period 35 | 705 | 35 | 691.9941 | 13.00586 | 13.00586 | 169.1525 | 01.84% | |
Period 36 | 686 | 36 | 685.1039 | 0.896054 | 0.896054 | 0.802914 | 00.13% | |
Period 37 | 682 | 37 | 678.2138 | 3.786246 | 3.786246 | 14.33566 | 00.56% | |
Period 38 | 695 | 38 | 671.3236 | 23.67644 | 23.67644 | 560.5737 | 03.41% | |
Period 39 | 692 | 39 | 664.4334 | 27.56663 | 27.56663 | 759.9191 | 03.98% | |
Period 40 | 686 | 40 | 657.5432 | 28.45682 | 28.45682 | 809.7907 | 04.15% | |
Period 41 | 673 | 41 | 650.653 | 22.34701 | 22.34701 | 499.389 | 03.32% | |
Period 42 | 681 | 42 | 643.7628 | 37.2372 | 37.2372 | 1386.609 | 05.47% | |
Period 43 | 696 | 43 | 636.8726 | 59.1274 | 59.1274 | 3496.049 | 08.50% | |
Period 44 | 688 | 44 | 629.9824 | 58.01759 | 58.01759 | 3366.041 | 08.43% | |
Period 45 | 671 | 45 | 623.0922 | 47.90778 | 47.90778 | 2295.155 | 07.14% | |
Period 46 | 645 | 46 | 616.202 | 28.79797 | 28.79797 | 829.3232 | 04.46% | |
Period 47 | 617 | 47 | 609.3118 | 7.688163 | 7.688163 | 59.10786 | 01.25% | |
Period 48 | 603 | 48 | 602.4216 | 0.578355 | 0.578355 | 0.334495 | 00.10% | |
Period 49 | 571 | 49 | 595.5315 | -24.5315 | 24.53145 | 601.7922 | 04.30% | |
Period 50 | 575 | 50 | 588.6413 | -13.6413 | 13.64126 | 186.084 | 02.37% | |
Period 51 | 547 | 51 | 581.7511 | -34.7511 | 34.75107 | 1207.637 | 06.35% | |
Period 52 | 542 | 52 | 574.8609 | -32.8609 | 32.86088 | 1079.837 | 06.06% | |
Period 53 | 532 | 53 | 567.9707 | -35.9707 | 35.97069 | 1293.89 | 06.76% | |
Period 54 | 496 | 54 | 561.0805 | -65.0805 | 65.08049 | 4235.471 | 13.12% | |
Period 55 | 472 | 55 | 554.1903 | -82.1903 | 82.1903 | 6755.246 | 17.41% | |
Period 56 | 460 | 56 | 547.3001 | -87.3001 | 87.30011 | 7621.309 | 18.98% | |
Period 57 | 441 | 57 | 540.4099 | -99.4099 | 99.40992 | 9882.332 | 22.54% | |
Period 58 | 445 | 58 | 533.5197 | -88.5197 | 88.51973 | 7835.742 | 19.89% | |
Period 59 | 438 | 59 | 526.6295 | -88.6295 | 88.62954 | 7855.195 | 20.24% | |
Period 60 | 436 | 60 | 519.7393 | -83.7393 | 83.73934 | 7012.278 | 19.21% | |
Total | -2.2E-12 | 3002.533 | 206258 | 442.08% | ||||
Intercept | 933.150847 | Average | -3.6E-14 | 50.04222 | 3437.634 | 07.37% | ||
Slope | -6.8901917 | Bias | MAD | MSE | MAPE | |||
SE | 59.63365 | |||||||
Forecast | 512.849153 | 61 | ||||||
Correlation | -0.89751 | |||||||
Coefficient of determination | 0.805521 |
r² | 0.806 | |||||
r | -0.898 | |||||
Std. Error | 59.634 | |||||
n | 60 | |||||
k | 1 | |||||
Dep. Var. | Demand (y) | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 8,54,307.9812 | 1 | 8,54,307.9812 | 240.23 | 2.76E-22 | |
Residual | 2,06,258.0188 | 58 | 3,556.1727 | |||
Total | 10,60,566.0000 | 59 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=58) | p-value | 95% lower | 95% upper |
Intercept | 933.1508 | |||||
Period(x) | -6.8902 | 0.4445 | -15.499 | 2.76E-22 | -7.7800 | -6.0003 |
Therefore, we can conclude that the results are significant and the prediction analysis can be proceeded.