In: Chemistry
Calculate the pH at the equivalence point for the titration of 1.328 M HA (a weak acid with pKa = 6.95) with 1.328 M NaOH.
Let Volume of acid be 1 mL
use:
pKa = -log Ka
6.95 = -log Ka
Ka = 1.122*10^-7
find the volume of NaOH used to reach equivalence point
M(HA)*V(HA) =M(NaOH)*V(NaOH)
1.328 M *1.0 mL = 1.328M *V(NaOH)
V(NaOH) = 1 mL
Given:
M(HA) = 1.328 M
V(HA) = 1 mL
M(NaOH) = 1.328 M
V(NaOH) = 1 mL
mol(HA) = M(HA) * V(HA)
mol(HA) = 1.328 M * 1 mL = 1.328 mmol
mol(NaOH) = M(NaOH) * V(NaOH)
mol(NaOH) = 1.328 M * 1 mL = 1.328 mmol
We have:
mol(HA) = 1.328 mmol
mol(NaOH) = 1.328 mmol
1.328 mmol of both will react to form A- and H2O
A- here is strong base
A- formed = 1.328 mmol
Volume of Solution = 1 + 1 = 2 mL
Kb of A- = Kw/Ka = 1*10^-14/1.122*10^-7 = 8.913*10^-8
concentration ofA-,c = 1.328 mmol/2 mL = 0.664M
A- dissociates as
A- + H2O -----> HA + OH-
0.664 0 0
0.664-x x x
Kb = [HA][OH-]/[A-]
Kb = x*x/(c-x)
Assuming x can be ignored as compared to c
So, above expression becomes
Kb = x*x/(c)
so, x = sqrt (Kb*c)
x = sqrt ((8.913*10^-8)*0.664) = 2.433*10^-4
since c is much greater than x, our assumption is correct
so, x = 2.433*10^-4 M
[OH-] = x = 2.433*10^-4 M
use:
pOH = -log [OH-]
= -log (2.433*10^-4)
= 3.6139
use:
PH = 14 - pOH
= 14 - 3.6139
= 10.3861
Answer: 10.39