In: Finance
| 
 States of the Economy  | 
 Probability  | 
 Return of Stock A  | 
 Return of Stock B  | 
| 
 Recession  | 
 0.15  | 
 -0.10  | 
 -0.25  | 
| 
 Low Growth  | 
 0.25  | 
 -0.05  | 
 -0.15  | 
| 
 Normal  | 
 0.35  | 
 0.08  | 
 0.20  | 
| 
 Boom  | 
 0.25  | 
 0.35  | 
 0.40  | 
Correlation (r) between A & B = Covariance (A,B) / [
 ]
Covariance (A,B)
= 
= 
dA = Given return (A) - Expected return (A)
dB = Given return (B) - Expected return (B)
Standard deviation (
)
= 
Stock A
Expected return (A) = 
= 0.15*(-0.10) + 0.25(-0.05) +0.35(0.08) + 0.25(0.35) = 0.088
| Given return | Expected return | dA(Given return - Expected return) | (Given return - Expected return)2 | Prob *(Given return - Expected return)2 | 
| -0.1 | 0.088 | -0.188 | 0.035344 | 0.0053016 | 
| -0.05 | 0.088 | -0.138 | 0.019044 | 0.004761 | 
| 0.08 | 0.088 | -0.008 | 0.000064 | 0.0000224 | 
| 0.35 | 0.088 | 0.262 | 0.068644 | 0.017161 | 
| Total | -0.072 | 0.123096 | 0.027246 | 
Standard deviation of A = 
 = 0.1651 = 16.51%
Stock B
Expected return (B) = 
= 0.15*(-0.25) + 0.25(-0.15) +0.35(0.20) + 0.25(0.40) = 0.095
| Given return | Expected return | dB(Given return - Expected return) | (Given return - Expected return)2 | Prob *(Given return - Expected return)2 | 
| -0.25 | 0.095 | -0.345 | 0.119025 | 0.01785375 | 
| -0.15 | 0.095 | -0.245 | 0.060025 | 0.01500625 | 
| 0.20 | 0.095 | 0.105 | 0.011025 | 0.00385875 | 
| 0.40 | 0.095 | 0.305 | 0.093025 | 0.02325625 | 
| Total | -0.18 | 0.2831 | 0.059975 | 
Standard deviation of B = 
 = 0.2449 = 24.49%
| Probability | dA | dB | Prob*dA*dB | 
| 0.15 | -0.188 | -0.345 | 0.009729 | 
| 0.25 | -0.138 | -0.245 | 0.0084525 | 
| 0.35 | -0.008 | 0.105 | -0.000294 | 
| 0.25 | 0.262 | 0.305 | 0.0199775 | 
| Covariance | 0.037865 | 
Correlation between A & B = 0.037865 / 0.1651*0.2449 = 0.9365 = 0.937 = 0.94 Approx (rAB)
30% invested in A and 70% invested in B
Weight of A (WA) = 0.3 ; Weight of B (WB) = 0.7
Return of portfolio = A expected return * weight of A + B expected return * weight of B
= 0.088 * 0.3 + 0.095* 0.7 = 0.0929 = 9.29%
Standard deviation of the portfolio
=
=
= 0.2186 = 21.86%
(in case any doubt please comment, I wil get back to you immdiately)