In: Statistics and Probability
Two squares each 17cm by 17cm are drawn randomly inside a square
measuring 1m by 1m.
The edges of the two smaller squares are both
parallel/perpendicular to the edges of the large square.
What is the exact probability the two smaller squares overlap (or
touch)?
6,416,089/47,458,321
Since the centers of the two smaller squares, each lie inside a
square of side 83cm,
Find the probability that the horizontal and vertical distances
between 2 points in a square of side 83 cm are less than or equal
to 17 cm.
Since the centers of the two smaller squares, each lie inside a
square of side 83cm,
Considering the horizontal distances:
Let x and y be the horizontal distances of the two points from the
left edge of the 83 by 83 square.
Clearly, x and y can take any value from 0 to 83.
We can represent this space of possibilities using a grid where the
lower left corner is (0,0), the horizontal axis represents x, and
the vertical axis represents y.
We should out what part of this space represents the two points
that being a distance of 17cm or less apart, we can do this by
plotting a point where it is true.
Firstly assume y>x, then we must have y<=x+17.
This inequality is simply all the points on and below the straight
line from (0,17) to (66,83).
Now assume, y<=x, then we must have y>=x-17.
This inequality is simply all the points on and above the straight
line from (17,0) to (83,66).
Combining both inequalities gives a shaded area that lies between 2
right-angled triangles.
The smaller sides of each triangle will be 66 cm each. So the area
of both triangles together is 66^2.
So the shaded area=83^2-66^2=2533
Hence the probability the distance between x and y is less than or
equal to 17 is 2533/83^2=2533/6889.
Now Prob(any 2 points in 83 by 83 square having vertical AND
horizontal distance <=17) =
Prob(horizontal distance between points is <=17) * Prob(vertical
distance between points is <=17)
=2533/6889 * 2533/6889
=6,416,089/47,458,321