Question

In: Chemistry

Find the fraction of dissociation, α of an aqueous 0.400M triethylamine [(CH2CH3)N] solution.

Find the fraction of dissociation, α of an aqueous 0.400M triethylamine [(CH2CH3)N] solution.

Solutions

Expert Solution

Let α be the dissociation of the weak base,trimethylamine
                            BOH <---> B + + OH-

initial conc.            c               0         0

change               -cα            +cα      +cα

Equb. conc.         c(1-α)        cα      cα

Dissociation constant, Kb = (cα x cα) / ( c(1-α)               

                                          = c α2 / (1-α)

In the case of weak bases α is very small so 1-α is taken as 1

So Kb = cα2

==> α = √ ( Kb / c )

Given Kb = 6.46x10-5

          c = concentration = 0.400 M

Plug the values we get α = 0.0127

So the fraction of dissociation is α = 0.0127


Related Solutions

Find the pH and fraction of dissociation (α) of a 0.129 M solution of the weak...
Find the pH and fraction of dissociation (α) of a 0.129 M solution of the weak acid HA with Ka = 1.79 ✕ 10−5.
24. A)The pH of an aqueous solution of 0.475 M triethylamine (a weak base with the...
24. A)The pH of an aqueous solution of 0.475 M triethylamine (a weak base with the formula (C2H5)3N) is_____? B)The hydroxide ion concentration, [OH-], of an aqueous solution of 0.475 M ammonia is ___________M.
The mole fraction of glucose in an aqueous solution is 0.015. The density of the solution...
The mole fraction of glucose in an aqueous solution is 0.015. The density of the solution is 1.05 g/mL. Calculate the molarity and molality of the solution.
The hydronium ion concentration of an aqueous solution of 0.546 M triethylamine (a weak base with...
The hydronium ion concentration of an aqueous solution of 0.546 M triethylamine (a weak base with the formula (C2H5)3N) is ..
Dissociation of the Cs2CrO4 in aqueous solution to give a concentration of 0.02 M, calculate: the...
Dissociation of the Cs2CrO4 in aqueous solution to give a concentration of 0.02 M, calculate: the activity coefficients for Cs' and Croak ' using the two following methods a) the Extended Debye-Huckel Equation b) interpolation. c) Write the generic Kp expression for Cs2CrO4 including your calculated activity coefficients from part a).
Calculate the pH of a 0.0290 M aqueous solution of the weak base triethylamine ((C2H5)3N, Kb...
Calculate the pH of a 0.0290 M aqueous solution of the weak base triethylamine ((C2H5)3N, Kb = 5.20×10-4). pH = ?
The mole fraction of potassium phosphate, K3PO4, in an aqueous solution is 8.11x10-2
The mole fraction of potassium phosphate, K3PO4, in an aqueous solution is 8.11x10-2 The percent by mass of potassium phosphate in the solution is _______ %. The mole fraction of ammonium sulfide, (NH4)2S, in an aqueous solution is 3.42x10-2 The percent by mass of ammonium sulfide in the solution is _______ %.
The mole fraction of an aqueous solution of magnesium sulfite is 0.29. Calculate the molarity (in...
The mole fraction of an aqueous solution of magnesium sulfite is 0.29. Calculate the molarity (in mol/L) of the magnesium sulfite solution, if the density of the solution is 1.38 g mL-1. Determine the mole fraction of magnesium bromide in a 5.51 M aqueous solution of magnesium bromide. The density of the solution is 1.17 g mL-1.
You are asked to prepare an aqueous solution of ethylene glycol (HOCH2CH2OH) with a mole fraction...
You are asked to prepare an aqueous solution of ethylene glycol (HOCH2CH2OH) with a mole fraction of 0.192. a) If you use 645 g of water, what mass (in g) of ethylene glycol should you use? b) What is the molality of the resulting solution?
If you have a 2.14 m aqueous solution of NaHCO3, what is the mole fraction of...
If you have a 2.14 m aqueous solution of NaHCO3, what is the mole fraction of NaHCO3?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT