In: Statistics and Probability
The Whitcomb Company manufactures a metal ring for industrial engines that usually weighs about 50 ounces. A random sample of 50 of these metal rings produced the following wights (in ounces).
| 51 | 53 | 56 | 50 | 44 | 47 | 
| 53 | 53 | 42 | 57 | 46 | 55 | 
| 41 | 44 | 52 | 56 | 50 | 57 | 
| 44 | 46 | 41 | 52 | 69 | 53 | 
| 57 | 51 | 54 | 63 | 42 | 47 | 
| 47 | 52 | 53 | 46 | 36 | 58 | 
| 51 | 38 | 49 | 50 | 62 | 39 | 
| 44 | 55 | 43 | 52 | 43 | 42 | 
| 57 | 49 | 
(a) Construct a 95% confidence interval for the average weight of the metal rings made by Whitcomb Company.
(b) Test at 5% significance level to determine if the metal rings made by Whitcomb Company have an average weight less than 50 ounces.
(Hint: you have to first calculate the sample size, sample mean, and sample standard deviation; and then apply the appropriate statistical inference techniques)
a)
Level of Significance ,    α =   
0.05          
degree of freedom=   DF=n-1=   49  
       
't value='   tα/2=   2.0096   [Excel
formula =t.inv(α/2,df) ]      
          
       
Standard Error , SE = s/√n =   6.8044   /
√   50   =   0.962293
margin of error , E=t*SE =   2.0096  
*   0.96229   =   1.933801
          
       
confidence interval is       
           
Interval Lower Limit = x̅ - E =    49.84  
-   1.933801   =   47.906199
Interval Upper Limit = x̅ + E =    49.84  
-   1.933801   =   51.773801
95%   confidence interval is (  
47.91   < µ <   51.77  
)
b)
Ho :   µ =   50  
           
   
Ha :   µ <   50  
    (Left tail test)      
   
          
           
   
Level of Significance ,    α =   
0.05          
       
sample std dev ,    s = √(Σ(X- x̅ )²/(n-1) )
=   6.8044      
           
Sample Size ,   n =    50  
           
   
Sample Mean,    x̅ = ΣX/n =   
49.8400          
       
          
           
   
degree of freedom=   DF=n-1=   49  
           
   
          
           
   
Standard Error , SE = s/√n =   6.8044   / √
   50   =   0.9623  
   
t-test statistic= (x̅ - µ )/SE = (   49.840  
-   50   ) /    0.9623  
=   -0.17
          
           
      
          
           
   
p-Value   =   0.4343   [Excel formula
=t.dist(t-stat,df) ]      
       
Decision:   p-value>α, Do not reject null
hypothesis
          
           
Conclusion: There is not enough evidence that metal rings made by
Whitcomb Company have an average weight less than 50 ounces
Thanks in advance!
revert back for doubt
Please upvote