In: Chemistry
What are self-assembled monolayers and how are they characterized?
Self-assembled monolayers (SAM) of organic molecules are molecular assemblies formed spontaneously on surfaces by adsorption and are organized into more or less large ordered domains. In some cases molecules that form the monolayer do not interact strongly with the substrate. This is the case for instance of the two-dimensional supramolecular networks of e.g. Perylene-tetracarboxylicacid-dianhydride (PTCDA) on gold] or of e.g. porphyrins on highly oriented pyrolitic graphite (HOPG). In other cases the molecules possess a head group that has a strong affinity to the substrate and anchors the molecule to it. Such a SAM consisting of a head group, tail and functional end group is depicted in . Common head groups include thiols, silanes, phosphonates, etc.
SAMs are created by the chemisorption of "head groups" onto a substrate from either the vapor or liquid phase followed by a slow organization of "tail groups". Initially, at small molecular density on the surface, adsorbate molecules form either a disordered mass of molecules or form an ordered two-dimensional "lying down phase", and at higher molecular coverage, over a period of minutes to hours, begin to form three-dimensional crystalline or semicrystalline structures on the substrate surface. The "head groups" assemble together on the substrate, while the tail groups assemble far from the substrate. Areas of close-packed molecules nucleate and grow until the surface of the substrate is covered in a single monolayer.
Adsorbate molecules adsorb readily because they lower the surface free-energy of the substrate and are stable due to the strong chemisorption of the "head groups." These bonds create monolayers that are more stable than the physisorbed bonds of Langmuir–Blodgett films. A Trichlorosilane based "head group", for example in a FDTS molecule reacts with an hydroxyl group on a substrate, and forms very stable, covalent bond [R-Si-O-substrate] with an energy of 452 kJ/mol. Thiol-metal bonds, that are on the order of 100 kJ/mol, making the bond a fairly stable in a variety of temperature, solvents, and potentials. The monolayer packs tightly due to van der Waals interactions, thereby reducing its own free energy The adsorption can be described by the Langmuir adsorption isotherm if lateral interactions are neglected. If they cannot be neglected, the adsorption is better described by the Frumkinisotherm
The thicknesses of SAMs can be measured using ellipsometry and X-ray photoelectron spectroscopy (XPS), which also give information on interfacial properties. The order in the SAM and orientation of molecules can be probed by Near Edge Xray Absorption Fine Structure (NEXAFS) and Fourier Transform Infrared Spectroscopy in Reflection Absorption Infrared Spectroscopy (RAIRS) studies. Numerous other spectroscopic techniques are used such as Second-harmonic generation (SHG), Sum-frequency generation (SFG), Surface-enhanced Raman scattering (SERS), as well as] High-resolution electron energy loss spectroscopy (HREELS). The structures of SAMs are commonly determined using scanning probe microscopy techniques such as atomic force microscopy (AFM) and scanning tunneling microscopy (STM). STM has been able to help understand the mechanisms of SAM formation as well as determine the important structural features that lend SAMs their integrity as surface-stable entities. In particular STM can image the shape, spatial distribution, terminal groups and their packing structure. AFM offers an equally powerful tool without the requirement of the SAM being conducting or semi-conducting. AFM has been used to determine chemical functionality, conductance, magnetic properties, surface charge, and frictional forces of SAMs More recently, however, diffractive methods have also been used. The structure can be used to characterize the kinetics and defects found on the monolayer surface. These techniques have also shown physical differences between SAMs with planar substrates and nanoparticle substrates. An alternative characterisation instrument for measuring the self-assembly in real time is dual polarisation interferometry where the refractive index, thickness, mass and birefringence of the self assembled layer are quantified at high resolution. Contact angle measurements can be used to determine the surface free-energy which reflects the average composition of the surface of the SAM and can be used to probe the kinetics and thermodynamics of the formation of SAMs. The kinetics of adsorption and temperature induced desorption as well as information on structure can also be obtained in real time by ion scattering techniques such as low energy ion scattering (LEIS) and time of flight direct recoil spectroscopy (TOFDRS).